Проводники и диэлектрики в электрическом поле

Природа явления

Глазами электрическое поле увидеть невозможно: его можно обнаружить по его действию на заряженные тела. При этом такое воздействие не требует прямого касания носителей потенциала, но имеет силовую природу. Так, наэлектризованные волосы будут тянуться к другим предметам.

Наблюдение за электрическими полями показывает, что они работают аналогично гравитационным. Описывается это законом Кулона, который в общем виде выглядит так:

F = q₁ q₂ / 4 π ε ε₀ r ²,

где q₁ и q₂ — величины зарядов в кулонах, ε — диэлектрическая проницаемость среды, ε₀ — электрическая постоянная, равная 8,854*10⁻¹² Ф/м, r — расстояние между зарядами в метрах, а F — сила, с которой заряды взаимодействуют, в ньютонах.

Таким образом, чем дальше от центра, тем меньше будет ощущаться воздействие поля.

Отобразить поле графически можно в виде силовых линий. Их расположение будет зависеть от геометрических характеристик носителя. Различают два вида полей:

  1. Однородное, когда силовые линии расположены параллельно друг другу. Идеальный случай — это бесконечные параллельные заряженные пластины.
  2. Неоднородное, частный случай которого — поле вокруг точечного или сферического заряда; его силовые линии расходятся радиально от центра, если он положительный, и к центру, если отрицательный.

Таковы основные свойства электрического поля. Чтобы ознакомиться с его характеристиками, стоит рассмотреть простейший вариант — электростатическое, которое формируется постоянными и неподвижными зарядами. Для удобства они будут точечными, чтобы их контуры не усложняли расчеты. Пробный заряд, который тоже будет фигурировать в дальнейшем, тоже будет точечным и бесконечно малым.

https://youtube.com/watch?v=kD-6e7fgvmY

Описание как векторное поле

Основная статья : Напряженность электрического поля

Электрическое поле может быть описано векторным полем на напряженности электрического поля .
Э.→{\ displaystyle {\ vec {E}}}

Векторное поле напряженности электрического поля определяет положение и зависящий от времени вектор напряженности электрического поля каждой точке в пространстве . Напряженность электрического поля описывает силовое воздействие на заряды и может быть экспериментально определена по этому силовому эффекту. Если сила действует на электрический испытательный заряд в месте, где отсутствует магнитное поле , то напряженность электрического поля определяется по формуле:Э.→{\ displaystyle {\ vec {E}}}Икс→{\ displaystyle {\ vec {x}}} q{\ displaystyle q}Ф.→(Икс→){\ displaystyle {\ vec {F}} ({\ vec {x}})}Э.→(Икс→){\ displaystyle {\ vec {E}} ({\ vec {x}})}

Э.→(Икс→)знак равноФ.→(Икс→)q{\ displaystyle {\ vec {E}} ({\ vec {x}}) = {{\ vec {F}} ({\ vec {x}}) \ over q}}.
Поле, исходящее от самого испытательного заряда, и другие силы, такие как гравитация, не учитываются .

Векторное поле плотности электрического потока присваивает зависящий от местоположения и времени вектор плотности электрического потока каждой точке в пространстве . Плотность электрического потока можно измерить только косвенно. Можно использовать два свойства плотности электрического потока:Д.→{\ displaystyle {\ vec {D}}}Д.→{\ displaystyle {\ vec {D}}}

1. Интеграл по площади от плотности электрического потока по замкнутой области (например, сферической поверхности) в соответствии с законом Гаусса имеет тот же размер, что и заряд, содержащийся в замкнутом объеме.

∬∂В.⊂⊃Д.→⋅dА.→знак равно∭В.ρ dВ.знак равноQ(В.){\ displaystyle \ iint _ {\ partial V} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \ ! \; \; \; \ subset \! \ supset {\ vec {D}} \; \ cdot \ mathrm {d} {\ vec {A}} = \ iiint _ {V} \ rho \ \ mathrm {d } V = Q (V)}
Закон Гаусса действует независимо от времени. Соответственно, это связано с идеей, что электрическое поле источника, вызванное зарядами, уже присутствует во всей комнате, а не просто распространяется.
2. Временное изменение плотности электрического потока действует как электрический ток и проявляется как ток смещения в расширенном законе Ампера .

∮∂А.ЧАС→⋅ds→знак равно∬А.j→л⋅dА.→+∬А.∂Д.→∂т⋅dА.→{\ Displaystyle \ oint _ {\! \! \! \ partial A} {\ vec {H}} \; \ cdot \ mathrm {d} {\ vec {s}} = \ iint _ {A} {\ vec {j}} _ {l} \; \ cdot \ mathrm {d} {\ vec {A}} + \ iint _ {A} {{\ frac {\ partial {\ vec {D}}} {\ partial t }} \; \ cdot \ mathrm {d} {\ vec {A}}}}

Плотность энергии электрического поля зависит от напряженности электрического поля и плотности электрического потока.

шелзнак равно12(Э.→⋅Д.→){\ displaystyle w _ {\ mathrm {el}} = {\ frac {1} {2}} \ left ({\ vec {E}} \ cdot {\ vec {D}} \ right)}.

Связь между напряженностью электрического поля и плотностью электрического потока зависит от среды и, как правило, нелинейна из-за электрической поляризации . Электрическая поляризация в материале связана со сдвигом заряда и, следовательно, с переносом энергии. Следовательно, он не является мгновенным и, следовательно, также зависит от частоты. Для многих средств массовой информации все еще можно приблизительно иметь линейную зависимость в виде

Д.→знак равноεεрЭ.→{\ displaystyle {\ vec {D}} = \ varepsilon _ {0} \ varepsilon _ {\ mathrm {r}} {\ vec {E}}}

с постоянной электрического поля и диэлектрической проницаемостью .
ε{\ displaystyle \ varepsilon _ {0}} εр{\ Displaystyle \ varepsilon _ {\ mathrm {r}}}

В вакууме с соотношением между двумя полями строго линейным, а также : .
εрзнак равно1{\ Displaystyle \ varepsilon _ {\ mathrm {r}} = 1}Д.→знак равноεЭ.→{\ displaystyle {\ vec {D}} = \ varepsilon _ {0} {\ vec {E}}}

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов .

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Что такое электрическое поле?

Мы знаем, что электрическое поле существует реально. Мы можем исследовать его свойства опытным путем. Но мы не можем сказать, из чего это поле состоит. Здесь мы доходим до границы того, что сейчас известно науке.

Дом состоит из кирпичей, плит и других материалов, которые в свою очередь состоят из молекул, молекулы — из атомов, атомы — из элементарных частиц. Элементарные же частицы, такие, как электрон, ни из чего более простого, чем они сами, не состоят. По крайней мере, сейчас более простых образований мы не знаем. Так же обстоит дело и с электрическим полем. Ничего более простого, более элементарного, чем поле, мы не знаем. Поэтому на вопрос о том, что такое электрическое поле, мы можем ответить только так:

во-первых, поле материально: оно существует независимо от нас, от наших знаний о нем;
во-вторых, поле обладает определенными свойствами, которые не позволяют его спутать с чем-либо другим в окружающем мире. Установление этих свойств является единственным ответом на вопрос, что такое электрическое поле.

При изучении электрического поля мы сталкиваемся с особым видом материи, движение которой не подчиняется законам механики Ньютона. С открытием электрического поля впервые за всю историю науки появилась глубокая идея: существуют различные виды материи и каждому из них присущи свои законы.

Постоянный электрический ток

Электрический ток – направленное движение свободных носителей энергии в веществе или внутри вакуума. Этот показатель появляется при соблюдении главных условий:

  • Есть источник энергии.
  • Замкнутость пути, который используется для перемещения.

I – буква, которую применяют для обозначения силы тока.

Важно. Единица измерения – Амперы

Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени.

Когда речь о постоянном токе – предполагается, что с течением времени не меняются его направление, основная величина.

Амперметр – устройство, применяемое для измерения силы тока. Его подключение к цепи – последовательное. Показатель важен, поскольку от него зависят и сила воздействия и другие подобные параметры. На практике часто встречаются ситуации, когда сила тока заменяется плотностью. В данном случае единица измерения – Ампер на метр квадратный. Площадь сечения проводов выражается в мм 2 . И плотность тока предполагает опору на эту характеристику.

Электрическое поле можно назвать реально существующим явлением, как и любые предметы. Поле и вещества относят к основным формам существования материи. Способность действовать с силой на заряды – главное свойство. Его используют, чтобы обнаруживать, измерять явления. Ещё одна характеристика – распространение со скоростью света

Это тоже важно для тех, кто занимается изучением подобных факторов

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

– энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

– следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше: →

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: – Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП – поверхности равного потенциала.

– работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

– вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Связь между векторами E неоднородного поля и линиями напряженности

Рассмотрим еще раз рисунок, на котором изображено поле двух взаимодействующих зарядов. Выберем на нем одну силовую линию. Вычислим длины нескольких векторов E и нарисуем их в выбранных точках, расположенных на этой линии.

Рис. 19. Силовая линия двух притягивающихся точечных зарядов и векторы напряженности в нескольких точках этой линии

Если через каждый вектор напряженности провести прямую линию, можно заметить, что эти линии образуют семейство касательных. Такие касательные прямые линии ограничивают собой кривую. Эта кривая и будет являться силовой линией.

Теперь можно дать определение силовых линий:

В отдельной статье будет рассказано о работе электрического поля и еще одной его характеристике — потенциале.

Электрическое поле Земли

Земля имеет отрицательный заряд около 600000 Кл. В свою очередь, ионосфера Земли имеет положительный заряд. Поэтому, вся атмосфера Земли до высоты примерно в 50 км заполнена электрическим полем, которое можно приближенно считать однородным. Напряженность этого поля составляет от 100 до 300 В/м у поверхности. Мы не чувствуем этой разности потенциалов, поскольку человеческое тело является проводником, поэтому заряд частично переходит с Земли в него. Благодаря этому тело образует вместе с поверхностью Земли единую эквипотенциальные поверхности (то есть разность потенциалов между произвольной точкой на высоте 2 м и поверхностью Земли — около 200 вольт, однако разность потенциалов между головой человека и поверхностью Земли, на которой она стоит — близка к нулю).

Общая разность потенциалов между Землей и ионосферой составляет 400000 вольт.

Электрическое поле Земли влияет на движение заряженных частиц в атмосфере. Положительно заряженные частицы движутся в ней вниз, а отрицательно заряженные — вверх. Заряженные частицы постоянно образуются в атмосфере под действием космических лучей, благодаря чему в ней поддерживается постоянный ток с силой 10−12 ампер на каждый квадратный метр.

Понятие о диэлектриках.

К диэлектрикам относятся вещества, плохо проводящие электрический ток (плохо по сравнению с проводниками).
Термин введен

(dia (греч.) — через) для обозначения сред, через
которые проникает электрическое поле (напомним, что через проводники электростатическое поле не проникает).

Выясним, что происходит с диэлектриком в электрическом поле.
Зарядим электрометр и отметим его показания. Приблизим к электрометру незаряженный
диэлектрик, например, толстую стеклянную пластину (рис.11.1). Показания электрометра уменьшаются.

Такой же эффект наблюдается и для проводников. Как отмечалось ранее (), на теле
возникают индукционные заряды, которые изменяют поле.

Появление зарядов ведет к возникновению сил, действующих даже на незаряженные
диэлектрики. Стеклянная или парафиновая палочка, подвешенная на нити, будет
поворачиваться вдоль электрического поля (рис.11.2). Следовательно, на ближайшей
к шару части палочки появляются заряды, разноименные с зарядом шара, а на удаленной части — одноименные.

Однако между проводниками и диэлектриками есть существенное
различие. Повторим опыт, описанный в ,
но к электроскопам подсоединим диэлектрик (рис.11.3).

Если разделить его на две части, то они окажутся в целом
незаряженными, и листочки электроскопов не разойдутся.

Приведенные опыты показывают, что на первоначально незаряженных
диэлектриках в электрическом поле возникают электрические заряды. На диэлектрике
появляются электрические полюсы, отчего явление получило название поляризации
диэлектриков. Появившиеся заряды будем называть поляризационными. Их существенное
отличие от свободных зарядов в проводниках заключается в том, что отделить друг
от друга поляризационные заряды невозможно, поэтому их еще называют связанными.

rem:
Заметим, что в любом веществе
есть как свободные, так и связанные заряды. Внешнее электрическое поле действует
двояко: во-первых, начинает перемещать свободные заряды, то есть возникает электрический
ток; во-вторых, перераспределяет электрические заряды, то есть поляризует вещество
(рис.11.4). В зависимости от того, какой процесс преобладает, вещества и делятся
на проводники и диэлектрики. Очевидно, что изменяя внешние условия, например,
температуру, можно изменить баланс между этими процессами. Поэтому мы и отмечаем,
что в природе нет абсолютных диэлектриков или абсолютных проводников.

Статическое и вихревое поле

Как упоминалось в начале статьи, электрическое поле может возникать вокруг переменного магнитного поля. Оно даже создает ток, что может быть достигнуто двумя путями:

  • изменением интенсивности магнитного поля, проходящего сквозь контур проводника в нем;
  • изменением положения самого проводника.

При этом проводнику вовсе не обязательно быть замкнутым — ток в нем все равно будет течь.

Для иллюстрации отличий статического и вихревого поля можно составить таблицу.

Параметр Электростатическое Вихревое
форма силовых линий разомкнутые замкнутые
чем создается неподвижным зарядом переменным магнитным потоком
источник напряженности заряд отсутствует
работа по перемещению в замкнутом контуре нулевая создает ЭДС индукции

Нельзя сказать, что первое и второе поле никак между собой не связаны. Это не так. В реальности работает такая закономерность: неподвижный заряд создает электростатическое поле, которое движет заряд в проводнике; движущийся заряд порождает постоянное магнитное поле. Если заряд движется с непостоянной скоростью и направлением, то магнитное поле становится переменным и создает вторичное электрическое. Таким образом, электрическое поле и его характеристики влияют на возможность возникновения магнитного и его параметры.

Энергия электрического поля

Виды энергии:
Механическая  Потенциальная Кинетическая
‹› Внутренняя
Электромагнитная  Электрическая Магнитная
Химическая
Ядерная
G{\displaystyle G} Гравитационная
∅{\displaystyle \emptyset } Вакуума
Гипотетические:
Тёмная
См. также: Закон сохранения энергии

Полная энергия на единицу объёма, запасённая электромагнитным полем, равняется

uEM=ε2|E|2+12μ|B|2{\displaystyle u_{EM}={\frac {\varepsilon }{2}}|\mathbf {E} |^{2}+{\frac {1}{2\mu }}|\mathbf {B} |^{2}}

где ε — диэлектрическая проницаемость среды, в которой существует поле, μ{\displaystyle \mu } её магнитная проницаемость, а E и B — векторы электрического и магнитного полей.

Поскольку поля E и B связаны, то было бы ошибочным разделять это выражение на «электрические» и «магнитные» вклады. Однако в стационарном случае поля больше не связаны (см. Уравнения Максвелла). В этом случае имеет смысл вычислить электростатическую энергию в единице объёма

uES=12ε|E|2,{\displaystyle u_{ES}={\frac {1}{2}}\varepsilon |\mathbf {E} |^{2}\,,}

Таким образом, полная энергия U, запасённая в электрическом поле в данном объёме V, равна

UES=12ε∫V|E|2dV.{\displaystyle U_{ES}={\frac {1}{2}}\varepsilon \int _{V}|\mathbf {E} |^{2}\,\mathrm {d} V\,.}
UES=12∫VρΦdV.{\displaystyle U_{ES}={\frac {1}{2}}\int _{V}\rho \Phi \,\mathrm {d} V\,.}

Равенство двух выражений для электростатической энергии, одно из которых зависит от электрического поля E, а другое от электрического потенциала Φ{\displaystyle \Phi }, доказывается интегральной теоремой энергии поля, при этом интегрирование делается по всему бесконечному объёму.

Физика распространения

Если рассматривать одинокую частицу, то линии силы будут исходить от неё в радиальном направлении. При взаимодействии же двух и более зарядов на вид распространения влияет напряжённость. Чтобы нарисовать, как будут выглядеть линии, следует сложить векторы напряжённости. Их результирующая и будет характеризовать суммарное поле.

При составлении картинки распространения поля нужно учитывать, что точки соприкосновения на силовой линии определяются вектором напряжённости. Чтобы математически описать силовые кривые, необходимо составить уравнения. Вектора в них будут являться производными первого порядка. По сути, это обыкновенные касательные.

Каждая частица, добавленная в электромагнитное поле, оказывает на него влияние. Соответственно будет изменяться и узор кривых сил. Но в любом случае основой для построения визуализированного рисунка будет вектор напряжённости каждого источника поля. При этом правило, что линии напряжённости начинаются на положительном заряде, а заканчиваются на отрицательном, условное.

Довольно интересным для изучения является процесс возникновения электрического поля между заряженными бесконечными плоскостями. Созданная однородная материя между пластинками будет распространяться в параллельном направлении, то есть линии пересекаться не будут. Если же в зазор между ними внести точечный заряд, то кривые начнут изгибаться по дуге, поле станет неоднородным, а значение напряжённости будет зависеть от плотности.

Распространение поля подчиняется следующим правилам:

  • излучается во все направления;
  • изменяет свой рисунок при оказании внешнего воздействия;
  • уменьшается при удалении от источника;
  • может быть как однородным, так и неоднородным.

Электрические силы при внесении заряженной частицы в поле совершают работу. При незначительном воздействии её можно описать так: A = F * l * cos (a) = E * q * L. Таким образом, структура распространения зависит от расстояния между частицами.

Структура электрического поля

Для того чтобы понять структуру электрического вначале следует определить потенциал. Говоря просто, потенциал — это действие по переведению какого-либо тела или заряда из начального места в конкретный пункт размещения. Потенциал в сфере электрополя — это своеобразная энергия, которая двигает электрон. В результате движения он перемещается с точки так называемого нулевого потенциала в другую точку, имеющую ненулевой потенциал.

Чем выше потенциал, который потрачен на передвижение электрического заряда или тела, тем более значительной будет плотность потока на единице площади. Это явление сравнимо с законом гравитации: чем больше вес тела, тем выше энергия, действующая на него, а, значит, значительнее плотность гравитационной характеристики. В естественных условиях существуют заряды с незначительным потенциалом и с низкой степенью плотности, а также заряженные частицы и тела с высоким потенциалом и насыщенной плотностью потока. Такое явление, как работа по перемещению электрозаряда, наблюдается при грозе и молнии, когда в одном месте происходит истощение электронов, а в другом — их насыщение, образовывающее своеобразное электрически заряженное ЭП, когда происходит разряд в виде молнии.

Векторное поле

Предположим, что в углу комнаты лежит большой магнит. А мы ходим по комнате со шнурком, к одному концу которого привязан железный гвоздь. Второй конец шнурка держим в горизонтально вытянутой руке.

Расхаживая по комнате, мы заметим, что в некоторой области комнаты шнурок с гвоздем отклоняется от вертикального положения в сторону магнита.

Чем ближе мы подходим к магниту, тем сильнее он притягивает гвоздь. Тем больше усилий нужно приложить, чтобы удержать шнурок в руке.

Такие поля, наподобие поля, созданного магнитом, называют силовыми полями.

Поля силовые – это векторные поля, так как распределенная по комнате и измеренная в различных точках комнаты сила – это векторная величина.

Теперь каждой точке комнаты мы можем поставить в соответствие не только координаты точки, но и вектор F силы, действующей на гвоздь в этой точке.

Составим таблицу и запишем в нее координаты каждой выбранной точки комнаты и силы, с которой магнит действует на гвоздь в этой точке.

У вектора силы в каждой отдельной точке будут свои характеристики — длина и направление. Поэтому, таблица, содержащая информацию о силе в каждой точке комнаты, будет содержать 6 строк. Три строки – это координаты точки, и три строки – координаты вектора.

Такая таблица задает функцию, которую математики называют сокращенно «вектор-функцией».

Вектор-функцию, описывающую векторное поле, можно обозначить так:

\(\large \overrightarrow{A \left( P \right)} \) – вектор-функция. Подробнее можно записать ее таким способом:

\

\( A_{x}\left( x ; y ; z \right) ; A_{y}\left( x ; y ; z \right) ; A_{z}\left( x ; y ; z \right) \) – это компоненты (части) вектор функции.

\( \vec{i} ; \vec{j} ; \vec{k} \) – орты.

Обычно в школе такие функции не изучают. Но вы теперь знаете, что кроме обычных — скалярных функций, существуют вектор-функции.

Из записи видно, что векторная функция отличается от скалярной тем, что имеет три компоненты (части). Каждая компонента (часть) зависит от трех координат точки P пространства.

Описание

Электрическое поле положительного точечного электрического заряда, подвешенного над полубесконечном проводящем материале. Поле изображается линиями электрического поля, которые указывают направление электрического поля в пространстве.

Электрическое поле определяется в каждой точке пространства как сила (на единицу заряда), которую испытывает исчезающе малый положительный пробный заряд, помещённый в этой точке. Поскольку электрическое поле определяется в терминах силы, а сила является вектором (то есть имеющей величину, и направление), из этого следует, что электрическое поле будет векторным полем . Векторные поля такого вида иногда называют силовыми полями. Электрическое поле действует между двумя зарядами аналогично тому, как гравитационное поле действует между двумя массами расположенными на каком-то расстоянии, поскольку они оба подчиняются закону обратных квадратов.Закон Кулона гласит, что для стационарных зарядов электрическое поле изменяется в зависимости от заряда источника и изменяется обратно пропорционально квадрату расстояния от источника. Это означает, что при удвоении заряда источника, электрическое поле удваивается, а если пробный заряд отодвинуть вдвое дальше от источника, то поле в этой точке будет только четверть его первоначальной силы.

Электрическое поле можно визуализировать с помощью набора линий, направление которых совпадает с направлением поля в этой точке. Эта концепция была введена Майклом Фарадеем чей термин «силовые линии» все ещё используется. Такая интерпретация полезна тем, что напряжённость электрического поля пропорциональна плотности линий. Силовые линии — это пути, по которым следовал бы точечный положительный заряд бесконечно малой массы, когда он вынужден двигаться в области поля, подобно траекториям, по которым пробные массы следуют в гравитационном поле. Силовые линии стационарных зарядов имеют несколько важных свойств: линии поля начинаются от положительных зарядов и заканчиваются отрицательными зарядами, они входят во все хорошие проводники под прямым углом, и они никогда не пересекаются и не замыкаются между собой. Линии поля удобны для схематичного представления; но поле фактически пронизывает все пространство между линиями. Можно нарисовать больше или меньше линий в зависимости от точности, с которой желательно представить поле. Изучение электрических полей, создаваемых стационарными зарядами, называется электростатикой.

Закон Фарадея описывает взаимосвязь между изменяющимися во времени магнитным и электрическим полями. Один из способов сформулировать закон Фарадея состоит в том, что ротор электрического поля равен отрицательной частной производной магнитного поля по времени. В отсутствие изменяющегося во времени магнитного поля, электрическое поле называется потенциальным (то есть безроторным). Это означает, что существует два вида электрических полей: электростатические поля и поля, возникающие из изменяющихся во времени магнитных полей. Статическое электрическое поле рассматривается с помощью электростатики, но при изменяющемся во времени магнитном поле необходимо рассматривать электромагнитное поле. Изучение изменяющихся во времени магнитных и электрических полей называется электродинамикой.

Объемные заряды в диэлектриках.

Если вектор поляризованности различен в разных точках
пространства, то есть поляризация неоднородная, то в диэлектрике могут появиться
и объемные заряды. Рассмотрим внутри неоднородно поляризованного диэлектрика
б/м объем dV (рис.11.6). Поляризованность в точке М(x,y,z) равна
. Тогда положительный заряд
на грани 1234 (выходящий из объема dV) равен (q=sS)

а заряд на грани 5678 (входящий в объем dV)

Разность этих зарядов


.

По смыслу — это заряд, который должен образоваться внутри объема, чтобы нейтрализовать
действие внешнего поля.

Ясно, что аналогичная ситуация должна быть и на других гранях, то есть образующийся
внутри объема dV заряд должен равняться


     (11.10)

С другой стороны, этот же заряд равен , где
— объемная плотность связанных зарядов. Очевидно,
что в скобках формулы (11.10) стоит оператор дивергенции. Тогда


      (11.13)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector