Как найти работу источника тока формула

Работа и мощность постоянного тока.

Давайте вспомним первую статью курса “Основы электроники” – вот она. Там мы определили напряжение как работу, которую необходимо затратить для переноса единичного заряда из одной точки в другую. Обозначим эту величину – A. Чтобы найти работу, которую совершат несколько зарядов, нам необходимо работу одного заряда умножить на количество зарядов:

A_0 = AN

По определению мощность – это работа за единицу времени. Таким образом, мы получаем формулу мощности:

P = \frac{A_0}{\Delta t} = \frac{N}{\Delta t}A

Снова возвращаемся мысленно к уже упомянутой первой статье курса, в которой мы обсуждали понятия тока и напряжения и вспоминаем, что количество зарядов, проходящее через проводник в единицу времени (\frac{N}{\Delta t}) – это и есть ток по определению. И в итоге мы приходим к следующему выражению для мощности электрического тока:

P = IU

Здесь мы также учли, что работа A – численно равна напряжению на данном участке цепи.Собственно, мы получили одну из основных формул для нахождения мощности постоянного тока. А учитывая закон Ома получаем следующее:

P = IU = I(IR) = I^2R

P = IU = \frac{U}{R}\medspace U = \frac{U^2}{R}

Единицей измерения мощности является Ватт, а 1 Вт – мощность, при которой за 1 секунду совершается работа 1 Джоуль.

Тут необходимо остановиться на одном довольно интересном нюансе. Часто при обсуждении работы электрического тока можно услышать сочетание – киловатт-час. Например, электросчетчики в домах показывают работу именно в этих единицах измерения. Так вот несмотря на схожесть в названиях единиц измерения мощности (ватт) и работы (киловатт – час / ватт – час) не стоит забывать, что эти термины относятся к разным физическим величинам. Чтобы перевести КВт*ч в более привычные с точки зрения системы измерений Си Джоули можно воспользоваться следующим математическим соотношением:

1\medspace КВт\cdotч = 3600000\medspace Дж

Давайте рассмотрим небольшой пример для иллюстрации вышесказанного

Мощность электрического тока

Работа, произведенная в единицу времени, называется мощностью и обозначается буквой P.

Из этой формулы имеем:

A = P × t.

Единица измерения мощности:

1 (Дж/сек) иначе называется ваттом (Вт). Подставляя в формулу мощности выражение для работы электрического тока, имеем:

P = U × I (Вт).

Формула мощности электрического тока может быть выражена также через потребляемый ток и сопротивление потребителя:

Кроме ватта, на практике применяются более крупные единицы измерения электрической мощности. Электрическая мощность измеряется в:

100 Вт = 1 гектоватт (гВт); 1000 Вт = 1 киловатт (кВт); 1000000 Вт = 1 мегаватт (МВт).

Электрическая мощность измеряется специальным прибором – ваттметром. Ваттметр имеет две обмотки (катушки): последовательную и параллельную. Последовательная катушка является токовой и включается последовательно с нагрузкой на участке цепи, где производятся измерения, а параллельная катушка – это катушка напряжения, она соответственно включается параллельно этой нагрузке.  Принцип действия ваттметра основан на взаимодействии двух магнитных потоков создаваемых током, протекающим по обмотке подвижной катушки (токовой катушки), и током, проходящим по неподвижной катушке (катушке напряжения). При прохождении измеряемого тока по обмотке подвижной и неподвижной катушек образуются два магнитных поля, при взаимодействии которых подвижная катушка стремится расположится так, чтобы направление ее магнитного поля совпадало с направлением магнитного поля неподвижной катушки. Вращающему моменту противодействует момент, созданный спиральными пружинками, через которые в подвижную катушку проводится измеряемый ток. Противодействующий момент пружинок прямо пропорционален углу поворота катушки. Стрелка, укрепленная на подвижной катушке, указывает значение измеряемой величины. Схема включения ваттметра показана на рисунке 2.

Рисунок 2. Схема включения ваттметра

Если вы решили измерить потребляемую мощность, какой либо имеющейся у вас нагрузки, и при этом у вас отсутствует ваттметр, вы можете “изготовить” ваттметр своими руками. Из формулы P = I × U видно, что мощность, потребляемую в сети, можно определить, умножив ток на напряжение. Поэтому для определения мощности, потребляемой из сети, следует использовать два прибора, вольтметр и амперметр. Измерив амперметром потребляемый ток и вольтметром напряжение питающей сети, необходимо показание амперметра умножить на показание вольтметра.

Так, например, мощность, потребляемая сопротивлением r, при показании амперметра 3 А и вольтметра 220 В будет:

P = I × U = 3 × 220 = 660 Вт.

Для практических измерений электрической работы (энергии) джоуль является слишком мелкой единицей.

Если время t подставлять не в секундах, а в часах, то получим более крупные единицы электрической энергии:

1 Дж = 1 Вт × сек; 1 Вт × ч = 3600 ватт × секунд = 3600 Дж; 100 Вт × ч = 1 гектоватт × час (гВт × ч); 1000 Вт × ч = 1 киловатт × час (кВт × ч).

Электрическая энергия измеряется счетчиками электрической энергии.

Видео 1. Работа и мощность электрического тока

Видео 1. Работа и мощность электрического тока

Видео 2. Еще немного о мощности

Пример 1. Определить мощность, потребляемую электрическим двигателем, если ток в цепи равен 8 А и двигатель включен в сеть напряжением 220 В.

P = I × U = 8 × 220 = 1760 Вт = 17,6 гВт = 1,76 кВт.

Пример 2. Какова мощность, потребляемая электрической плиткой, если плитка берет из сети ток в 5 А, а сопротивление спирали плитки равно 24 Ом?

P = I 2 × r = 25 × 24 = 600 Вт = 6 гВт = 0,6 кВт.

При переводе механической мощности в электрическую и обратно необходимо помнить, что 1 лошадиная сила (л. с.) = 736 Вт; 1 киловат (кВт) = 1,36 л. с.

Пример 3. Определить энергию, расходуемую электрической плиткой мощностью 600 Вт в течение 5 часов.

A = P × t = 600 × 5 = 3000 Вт × ч = 30 гВт × ч = 3 кВт × ч

Пример 4. Определить стоимость горения двенадцати электрических ламп в течение месяца (30 дней), если четыре из них по 60 Вт горят по 6 часов в сутки, а остальные восемь ламп по 25 Вт горят по 4 часа в сутки. Цена за энергию (тариф) 2,5 рубля за 1 кВт × ч.

Мощность четырех ламп по 60 Вт.

P = 60 × 4 = 240 Вт.

Число часов горения этих ламп в месяц:

t = 6 × 30 = 180 часов.

Энергия, расходуемая этими лампами:

A = P × t = 240 × 180 = 43200 Вт × ч = 43,2 кВт × ч.

Мощность остальных восьми ламп по 25 Вт.

P = 25 × 8 = 200 Вт.

Число часов горения этих ламп в месяц:

t = 4 × 30 = 120 часов.

Энергия, расходуемая этими лампами:

A = P × t = 200 × 120 = 24000 Вт × ч = 24 кВт × ч.

Общее количество расходуемой энергии:

43,2 + 24 = 67,2 кВт × ч

Стоимость всей потребленной энергии:

67,2 × 2,5 = 168 рублей.

Приборы для измерения тока

Электроизмерительные приборы — это особый вид устройств, которые используются для измерения многих электрических величин. К ним относятся:

  • Амперметр переменного тока;
  • Вольтметр переменного тока;
  • Омметр;
  • Мультиметр;
  • Частометр;
  • Электрические счетчики.

Амперметр

Чтобы определить силу тока в электрической цепи, необходимо применить амперметр. Данный прибор включается в цепь последовательным образом и из-за пренебрежимо малого внутреннего сопротивления не оказывает влияния на ее состояние. Шкала амперметра проградуирована в амперах.

В классическом приборе через электромагнитную катушку проходит измеряемый ток, который образует магнитное поле, заставляющее отклоняться магнитную стрелку. Угол отклонения прямо пропорционален измеряемому току.

Классический амперметр

Электродинамический амперметр имеет более сложный принцип работы. В нем находятся две катушки: одна подвижная, другая стоит на месте. Между собой они могут быть соединены последовательно или параллельно. При прохождении тока через катушки их магнитные поля начинают взаимодействовать, что в результате заставляет подвижную катушку с закрепленной на ней стрелкой отклониться на некоторый угол, пропорциональный величине измеряемого тока.

Вольтметр

Для определения величины напряжения (разности потенциалов) на участке цепи используют вольтметр. Подключаться прибор должен параллельно цепи и обладать высоким внутренним сопротивлением. Тогда лишь сотые доли силы тока попадут в прибор.

Школьный вольтметр

Принцип работы заключается в том, что внутри вольтметра установлена катушка и последовательно подключенный резистор с сопротивлением не менее 1кОм, на котором проградуирована шкала вольтов. Самое интересное, что на самом деле резистор регистрирует силу тока. Однако деления подобраны таким образом, что показания соответствуют значению напряжения.

Омметр

Данный прибор используют для определения электрически активного сопротивления. Принцип действия состоит в изменении измеряемого сопротивления в напрямую зависящее от него напряжение благодаря операционному усилителю. Нужный объект должен быть подключен к цепи обратной связи или к усилителю.

Если омметр электронный, то он будет работать по принципу измерения силы тока, протекающего через необходимое сопротивление при постоянной разности потенциалов. Все элементы соединяют последовательно. В этом случае сила тока будет иметь следующую зависимость:

I = U/(r0 + rx),

где U — ЭДС источника, r0 — сопротивление амперметра, rx — искомое сопротивление. Согласно этой зависимости и определяют сопротивление.

Электронный омметр

Мультиметр

Приведенные в пример приборы сегодня используют лишь в школах на уроках физики. Для профессиональных задач были придуманы мультиметры. Самое обычное устройство включает в себя одновременно функции амперметра, вольтметра и омметра. Прибор бывает как легко переносимым, так и огромным стационарным с большим количеством возможностей. Название «мультиметр» в первый раз было применено именно к цифровому измерителю. Аналоговые приборы чаще называют «авометр», «тестер» или просто «Цешка».

Универсальный мультиметр

Работа тока — сложная, но очень важная тема в электродинамике. Не зная ее, не получится решить даже простейших задач. Даже электрики используют формулы по нахождению работы для проведения необходимых подсчетов.

Что называют работой тока

Электрический ток, как физическая величина, сам по себе не имеет практического значения. Наиболее важным фактором является действие тока, характеризующееся выполняемой им работой. Сама работа представляет собой определенные действия, в процессе которых один вид энергии превращается в другой. Например, электрическая энергия с помощью вращения вала двигателя, превращается в механическую энергию. Работа самого электрического тока заключается в движении зарядов в проводнике под действием электрического поля. Фактически вся работа по перемещению заряженных частиц выполняется электрическим полем.

С целью выполнения расчетов должна быть выведена формула работы электрического тока. Для составления формул понадобятся такие параметры, как сила тока и электрическое напряжение. Поскольку работа электрического тока и работа электрического поля – это одно и то же, она будет выражаться в виде произведения напряжения и заряда, протекающего в проводнике. То есть: A = Uq. Данная формула была выведена из соотношения, определяющего напряжение в проводнике: U = A/q. Отсюда следует, что напряжение представляет собой работу электрического поля А по переносу заряженной частицы q.

Сама заряженная частица или заряд отображается в виде произведения силы тока и времени, затраченного на движение этого заряда по проводнику: q = It. В этой формуле было использовано соотношение для силы тока в проводнике: I = q/t. То есть, сила тока является отношением заряда к промежутку времени, за которое заряд проходит через поперечное сечение проводника. В окончательном виде формула работы электрического тока будет выглядеть, как произведение известных величин: A = UIt.

Давайте разберемся, что измеряется в джоулях

Физика — наука естественного направления

Наверное, именно поэтому ей уделяется большое внимание в школьном курсе. Часто ученики сталкиваются с вопросом о том, что измеряется в джоулях

Это вполне ожидаемо, так как разные разделы физики могут включать в себя эту величину. Однако если попробовать немного разобраться в теме, то сразу станет все на свои места. Где же вы можете встретить то, что измеряется в джоулях? Ответ не прост, но понятен.

Все начинается с простой формулы A=F*S. На подобную зависимость контрольная работа может попасться уже после первого месяца знакомства с физикой. Если сразу понять, что к чему, то можно начать вполне успешное знакомство с наукой. F — сумма всех действующих сил, приложенных к телу, которая повлияла на изменение положения тела. Она измеряется в ньютонах. Суждение о том, что сила измеряется в джоулях, неверно. S — путь, которое прошло тело. В единицах СИ оно обозначено метрами. Таким образом, 1 Дж = 1 Н * 1 м. То есть фактически мы нашли работу с физической точки зрения

И совершенно неважно, кем и при каких обстоятельствах она была совершена

Далее, как правило, в восьмом классе изучаются тепловые процессы. Здесь вводится много новых понятий. Основная формула: Q=cm(t1-t2). Здесь опять возникает вопрос о том, что измеряется в джоулях в данной зависимости. И, кстати, заметим, что возникла какая-то непонятная переменная c. На самом деле это удельная теплоемкость вещества. Стоит отметить, что это, как правило, величина постоянная, измеренная уже давно. Ее размерность: Дж/(Кг*Градусов Цельсия). Отсюда легко заметить, что стоит перемножить эту величину на массу и на некоторую температуру, то получатся джоули. То есть буква Q. Она-то и измеряется в них. Стоит сказать, что на самом деле тепло — энергия. Например, в двигателях внутреннего сгорания сначала выделяется Q, которая затем с некоторым КПД переходит в A=F*S. На этом, в принципе, могут быть основаны некоторые олимпиадные задачи для 7-8 класса.

Еще одним большим разделом, который следует рассмотреть для того, чтобы узнать, что измеряется в джоулях, является «Электричество». Конечно, в более глобальных рамках называется он несколько иначе, но для школьной трактовки подойдет и такое обозначение. Многие знают, на каком принципе основаны лампы накаливания. Откуда же появляется тепловая энергия? Да, электрический ток совершает некоторую работу, которую можно рассчитать по формуле A=I*I*T*t. Здесь t — время, I — сила тока, R — сопротивление. Здесь работа также измеряется в джоулях.

Нельзя не сказать о механике, в которой рассматриваемая величина имеет немалое применение. Часто в школьных задачах имеет смысл Закон сохранения энергии. Так вот эта энергия как раз и измеряется в Джоулях. Основной смысл формулировки закона заключается в том, что тело имеет какую-то энергию при движении, тепловых процессах и других физических процессах. И если, например, деревянный брусок скользит по поверхности и останавливается, то это не значит, что он теряет энергию. Просто она уходит на работу силы трения.

Таким образом, вы узнали, что измеряется в джоулях. Как видно, эта характеристика используется во многих совершенно различных разделах физики. Однако если понять суть, то станет намного легче.

Физическая работа пробного заряда в электрическом поле

Итак, вы превратились в пробный электрический зарядq во много раз меньший чем зарядQ на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил. Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки+Q , и вас будет отталкивать от обкладки с зарядом-Q . Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.

Предположим, что вы вошли в конденсатор со стороны обкладки -Q

и вас тут же начало отталкивать от нее в сторону обкладки+Q . Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением. Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки+Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром. В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точкиA к точкеB (смотрите рисунок выше ). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому. В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть+q , тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на-1 .

На вас действовала сила и вы переместились из точки A

в точкуB , другими словами вы двигались отпотенциалаφa (большего) кпотенциалуφb (меньшему). Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние. Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении. Проделав обратный путь из точкиB в точкуA , вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.

Советуем изучить Тиристорный преобразователь

Разность этих двух потенциалов φa

иφb и будет являться электрическим напряжением. Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение. При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).

Разность потенциалов Δφ=φ1-φ2

всегда показывает какую работуA может совершить носитель зарядаq при перемещении этого заряда из точки с одним потенциаломφ1 в точку с другим потенциаломφ2 . При вычислении надо иметь в виду, что потенциалы могут быть как со знакомплюс , так и со знакомминус .

Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А

будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работаА будет со знаком (+). Таким образом электрическое напряжение — этоэнергетическая характеристика электрического поля и представляет собой разность потенциаловΔφ . Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение — это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.

E

, потенциалφ , и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят «Ну, из розетки, ясное дело» или же просто пожмут плечами

А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому

А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Приборы для измерения тока

Электроизмерительные приборы — это особый вид устройств, которые используются для измерения многих электрических величин. К ним относятся:

  • Амперметр переменного тока;
  • Вольтметр переменного тока;
  • Омметр;
  • Мультиметр;
  • Частометр;
  • Электрические счетчики.

Амперметр

Чтобы определить силу тока в электрической цепи, необходимо применить амперметр. Данный прибор включается в цепь последовательным образом и из-за пренебрежимо малого внутреннего сопротивления не оказывает влияния на ее состояние. Шкала амперметра проградуирована в амперах.

В классическом приборе через электромагнитную катушку проходит измеряемый ток, который образует магнитное поле, заставляющее отклоняться магнитную стрелку. Угол отклонения прямо пропорционален измеряемому току.


Классический амперметр

Электродинамический амперметр имеет более сложный принцип работы. В нем находятся две катушки: одна подвижная, другая стоит на месте. Между собой они могут быть соединены последовательно или параллельно. При прохождении тока через катушки их магнитные поля начинают взаимодействовать, что в результате заставляет подвижную катушку с закрепленной на ней стрелкой отклониться на некоторый угол, пропорциональный величине измеряемого тока.

Вольтметр

Для определения величины напряжения (разности потенциалов) на участке цепи используют вольтметр. Подключаться прибор должен параллельно цепи и обладать высоким внутренним сопротивлением. Тогда лишь сотые доли силы тока попадут в прибор.


Школьный вольтметр

Принцип работы заключается в том, что внутри вольтметра установлена катушка и последовательно подключенный резистор с сопротивлением не менее 1кОм, на котором проградуирована шкала вольтов. Самое интересное, что на самом деле резистор регистрирует силу тока. Однако деления подобраны таким образом, что показания соответствуют значению напряжения.

Омметр

Данный прибор используют для определения электрически активного сопротивления. Принцип действия состоит в изменении измеряемого сопротивления в напрямую зависящее от него напряжение благодаря операционному усилителю. Нужный объект должен быть подключен к цепи обратной связи или к усилителю.

Вам это будет интересно Особенности точечных светильников

Если омметр электронный, то он будет работать по принципу измерения силы тока, протекающего через необходимое сопротивление при постоянной разности потенциалов. Все элементы соединяют последовательно. В этом случае сила тока будет иметь следующую зависимость: I = U/(r0 + rx), где U — ЭДС источника, r0 — сопротивление амперметра, rx — искомое сопротивление. Согласно этой зависимости и определяют сопротивление.


Электронный омметр

Мультиметр

Приведенные в пример приборы сегодня используют лишь в школах на уроках физики. Для профессиональных задач были придуманы мультиметры. Самое обычное устройство включает в себя одновременно функции амперметра, вольтметра и омметра. Прибор бывает как легко переносимым, так и огромным стационарным с большим количеством возможностей. Название «мультиметр» в первый раз было применено именно к цифровому измерителю. Аналоговые приборы чаще называют «авометр», «тестер» или просто «Цешка».


Универсальный мультиметр

Работа тока — сложная, но очень важная тема в электродинамике. Не зная ее, не получится решить даже простейших задач. Даже электрики используют формулы по нахождению работы для проведения необходимых подсчетов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector