Датчики избыточного давления
Содержание:
- Задачи и примеры на подбор датчика определенного типа
- Советы по выбору и приобретению датчиков давления
- Датчики давления
- Назначение
- Датчик абсолютного давления во впускном коллекторе
- Масляный датчик: как устроен и работает
- Принципы измерения давления
- Что измеряют датчики давления
- Принцип работы механического датчика
Задачи и примеры на подбор датчика определенного типа
Проблема полупериодического реактора
Предположим, что имеется полунепрерывный реактор емкостью 1000 л с 50 кг цинка внутри под давлением 1 атм. и температурой равной 25°С. 6М хлористоводородной кислоты течет в реактор со скоростью 1 л / мин и вступая в реакцию с цинком производит хлорид цинка для использования в другом процессе.
А) Какие факторы следует учитывать?
Б) Скажите, если клапан выйдет из строя при рабочем давлении 4 атм. (т.е. он не закроется и реактор будет залит HCl) На какое давление вы можете безопасно установить точку останова?
С) Какой тип датчика должен быть использован?
Решение:
Факторы, которые следует учитывать:
-
Процесс
- Соляная кислота очень и очень едкая (особенно с такой высокой молярностью), и, таким образом любой датчик, который бы вы ни выбрали, должен быть в состоянии выдержать коррозионную природу процесса.
-
Диапазон давления
- Изначально реактор находится под давлением в 1 атм. Учитывая реакцию 2 HCl (жидк.) + Zn (металл.) -> H 2 (газ) + ZnCl 2 (жидк), вы производите один моль газообразного водорода в дополнение к существующему давлению воздуха в емкости. По мере протекания реакции, давление внутри сосуда будет существенно увеличиваться. Моделирование давления H 2 (газ) в идеальных условиях равно, Р = НЗТ / V
- Примерно через 1 час, давление H 2 (газ) увеличится до 4,38 атм, создав общее давление в сосуде на 5,38 атм.
-
Окружающая среда
- Здесь нет опасности от высоких температур и сильной вибрации из-за высокого расхода и скорости реакции.
-
Чувствительность
- Так как это умеренно опасный процесс, мы должны иметь выход датчика подключаемый к компьютеру. Так, инженер может безопасно наблюдать за процессом. Мы предполагаем, что датчик будет сигнализировать клапан HCl, чтобы закрыть его после того, как рабочее давление станет равным 3 атм., однако устройства иногда дают ошибку. Мы также должны иметь высокую чувствительность, поэтому предпочтительными будут электрические компоненты (т.е. мы не хотим, чтобы процесс отклонялся от нормального режима, хотя это потенциально возможно, если бы датчик был не очень чувствителен к постепенным изменениям).
Точка отключения
Принимая во внимание быстрое увеличение давления, как оценено в пункте (2), и отказ клапана при 4 атм., точка выключения должно быть примерно равна 3 атм
Тип датчика:
Учитывая типы датчиков, которые мы обсуждали, мы можем сразу отбросить вакуумные датчики, так как они работают при очень низких давлениях (почти вакууме, отсюда и название). Мы можем также отбросить дифференциальные датчики давления, поскольку мы не ищем перепада давления на резервуаре.
Поскольку мы хотим добиться высокой чувствительности, мы должны использовать электрические компоненты
Учитывая диапазон давлений (3 атм.; макс ~ 0,3 МПа) оптимальным будет емкостной элемент, потому что он прочный и хорошо работает в системе низкого давления.
Принимая во внимание коррозионную активность в системе с содержанием HCl , в качестве упругого элемента может быть использована мембрана. Мембраны также довольно прочны и обеспечивают быстрое время отклика.
Эта комбинация, вероятно, будет заключена в прочном, заполненном, глицерином / силиконом корпусе, чтобы защитить датчик от деградации.
Так, в итоге, мы выбираем датчик, который будет использовать диафрагму в качестве упругого элемента, емкостной элемент качестве электрического компонента и антикоррозийный корпус.
Пример 2
Ваш руководитель сказал вам добавить датчик давления в очень дорогой и важной части оборудования. Вы знаете, что часть оборудования работает на 1 МПа и при очень высокой температуре
Какой датчик вы бы выбрали?
Решение
Поскольку часть оборудования, которое вы имеете дело очень дорогое, вам нужен датчик, который имеет высокую чувствительность. Электрический датчик был бы подходящим, потому что вы могли бы подключить его к компьютеру для быстрого и простого считывания показаний. Кроме того, вы должны выбрать датчик, который будет работать на 1 МПа и сможет выдерживать высокие температуры. Из информации представленной в этой статье вы знаете, что есть много датчиков, которые будут работать при давлении 1 МПа, так что вы должны решить, относительно других влияющих факторов. Одним из наиболее чувствительных электрических датчиков является датчик емкостного типа. Он имеет чувствительность 0.07 МПа. Емкостный датчик обычно имеет диафрагму в качестве упругого элемента. Мембраны имеют быстрое время отклика, очень точны и работают на 1 МПа.
Советы по выбору и приобретению датчиков давления
Тип давления.
Важно определить, что вы будете измерять. Есть несколько типов давления: барометрическое, избыточное, вакуумное, относительное, абсолютное.Интервал разбега давления.Класс защиты датчика
Для разных условий работы определены свои степени защиты от пыли и влаги.Термокомпенсация.
Эффекты температуры: например, расширение предметов, создают значительные помехи на результат измерения датчика. Если температура всегда изменяется в среде, то нужна термокомпенсация. Про границы температур тоже нельзя забывать.Вид материала.
Свойства материала играют значительную роль для агрессивных условий.Тип сигнала выхода. Бывают цифровой вид и аналоговый. Нужно также учесть интервалы выхода сигнала, количество проводов.
Датчики давления
Механические датчики давления состоят из:
- Жидкостных датчиков давления.Поршневых систем.Пружинных систем.
Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора.
При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.
В технических манометрах чаще всего применяются упругие пружины:
- Одновитковые.Многовитковые.Плоские мембраны.Сильфоны.
Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину.
Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.
Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины.
Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.
Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.
Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.
На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной.
В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.
Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:
- Механические.Термические.Ионизационные.Индукционные.Акустические.
Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода.
Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.
На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:
- Конической трубки.Поплавка.
Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики.
Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.
Назначение
Электрические насосы в системе водоснабжения подают воду потребителю с определенным объемом и напором, при этом часть давления уходит на преодоление гидравлического сопротивления линии при перемещени потока на заданную высоту и расстояние, а остаток обеспечивает комфортный напор во внутридомовой магистрали.
Давление во внутренней системе необходимо для нормального функционирования санитарно-технических приборов, бытовой техники (стиральных и посудомоечных машин), смесительной арматуры на кухнях, в душевых кабинах и ванных комнатах. Чем больше протяженность внутридомовой линии и выше этажность дома, тем более высокий напор требуется на ее входе.
Рис. 2 Внешний вид и подключение насосной станции с реле давления к водозаборной системе
Чтобы получить необходимое значение, электронасос должен работать такой период времени, чтобы наполнить гидробак и магистраль с необходимым давлением, после чего отключиться. Именно реле давления управляет порогами срабатывания насоса за счет замыкания и размыкания цепи его питания, данная функция реализуется последовательным подключением одного из проводов питающего электрического кабеля к входным и выходным клеммам на корпусе датчика.
Многие схемы отопления имеют в своем составе циркуляционные насосы, повышающие давление и направляющие теплоноситель по контурам теплых полов и радиаторов отопления. При возникновении экстренных случаев, связанных с засором или забиванием трубопровода, электронасос будет работать в непрерывном режиме, повышая давление в системе – в результате может произойти повреждение трубопровода и оборудования. Избежать подобных ситуаций можно установкой реле, размыкающим цепь электропитания циркуляционной помпы при повышенных гидравлических нагрузках на магистраль.
Рис. 3 Реле, манометр и гидроаккумулятор в составе водозаборной станции
Датчик абсолютного давления во впускном коллекторе
Для начала стоит отметить, что в большинстве случаев, обзывать этот датчик датчиком абсолютного давления не совсем корректно, так как его задача не только измерить абсолютное давление в коллекторе, но а также и атмосферное (барометрическое) давление вне коллектора. Поэтому его с таким же успехом можно назвать и датчиком барометрического давления.
Для чего это необходимо?
Дело в том, что в разных местах нашей планеты атмосферное давление не одинаково. Да и в одном и том же месте давление с течением времени изменяется.
А при разном давлении изменяется и плотность воздуха, что приводит и к изменению массы воздуха на один и тот же объем. А это уже совершенно различные условия работы двигателя, и эту ситуацию блок управления двигателем должен учитывать, чтобы корректно управлять всё тем же двигателем.
При включении зажигания ЭБУ первым делом оценивает барометрическое давление. Так как пока двигатель не запущен, то давление в коллекторе равняется атмосферному. Именно этот момент позволяет избежать установки дополнительного датчика давления, который бы измерял барометрическое давление.
Ещё раз повторюсь – величина барометрического давления является очень важным измерением для нормальной работы системы управления двигателем!
Именно поэтому в мануалах по эксплуатации автомобиля указывается требование – при движении в горной местности или, наоборот, когда Вы едите с возвышенности, допустим, к морю, то необходимо периодически останавливать двигатель, чтобы ЭБУ определил новые значения барометрического давления.
Но кто из водителей будет останавливать двигатель, только из-за того, что так написано в книжке по эксплуатации? Да и кто, вообще, их читает?
Поэтому в ЭБУ закладывают алгоритмы перепроверки барометрического давления, которые работают и без остановки двигателя. Обычно это происходит при большой нагрузке на двигатель и при почти максимально открытой дроссельной заслонке.
Вот давайте посмотрим на приведенные графики. До резкого и полного нажатия педали газа, барометрическое давление составляет 98 кПа
Далее мы резко нажимаем педаль газа до упора и блок управления делает перезамеры барометрического давления. Оно теперь составляет 97 кПа
К чему это всё я описывал?
А чтобы подвести к первому заблуждению об этом датчике.
Большинство при проверке датчика абсолютного давления обращает внимание только на давление в коллекторе! Оно и понятно – датчик же абсолютного давления, значит и проверять необходимо абсолютное давление. Логика, в принципе, понятна, но имея уже какой-никакой опыт, я могу утверждать на основании своей личной статистики, что в подавляющем числе случаев неисправностей датчика абсолютного давления, проблемы вылезают как раз в некорректном измерении барометрического давления
Хотя абсолютное давление в этот момент не вызывает вопросов.
У меня таких проблемных графиков много и все я их выкладывать не буду, конечно. Но для примера парочку покажу. Вот барометрическое давление 112 кПа. Встречал показания и 115 кПа. Хотя максимальное давление на планете было официально зарегистрировано, по-моему, 108 кПа.
Поэтому датчик явно и нагло врет
Вот другой пример. Автомобиль едет по обычной дороге и показания барометрического давления составляют 98 кПа.
Но спустя пару секунд, давление падает до 84 кПа
Давление упало на 14 кПа! Такое может быть в реальности?
Конечно же нет. Датчик явно дает неверные показания. Хотя к абсолютному давлению в коллекторе претензий нет.
В общем, вывод первый – датчик абсолютного давления служит не только для измерения абсолютного давления, но и для измерения барометрического давления. Причём довольно часто проблемы проявляются именно в замерах барометрического давления, что приводит к проблемам в работе и пуске двигателя.
Второй вывод – датчик абсолютного давления измеряет давление в коллекторе! Если на последнем графике абсолютное давление составляет 28 кПа, то это и есть давление 28 кПа, но никак ни разрежение и, уж тем более, не вакуум, как часто можно встретить это описание в интернете. Это давление!
Ну теперь плавно перейдём к третьему и самому главному выводу. Для чего нужен датчик абсолютного давления и от чего зависят его показания.
Масляный датчик: как устроен и работает
Начнем с того, что уровень масла всегда должен быть не выше и не ниже нормы
Также важно убедиться, чтобы само масло было в нормальном состоянии, подходило для двигателя по вязкости и другим характеристикам. Давление масла тоже должно быть в пределах нормы
Только в этом случае силовой агрегат получает возможность достаточно долго работать с минимальным износом и потерями на трение. Однако если по каким-либо причинам работа масляной системы нарушается, это может привести к быстрому выходу двигателя из строя.
В отдельных случаях мотор может заклинить, что весьма опасно, если машина находится в движении. Чтобы своевременно предупредить водителя о том, что давление масла упало, устанавливается специальный датчик.
При этом бывает и так, что с системой смазки и двигателем все в порядке, однако датчик сигнализирует о том, что с давлением проблемы. Другими словами, на панели горит лампочка давления масла. Так или иначе, чтобы точно определить причину, нужно знать, как выполняется проверка и замена датчика давления масла.
Итак, на тех или иных ДВС указанный датчик стоит в разных местах. Например, на ВАЗ-2112 с 16-клапанным мотором датчик давления масла расположен с левой стороны двигателя на торце корпуса возле подшипников распредвала. Чтобы точно определить место установки и где находится датчик давления масла, нужно изучить мануал конкретного авто.
Идем далее. Что касается видов датчиков, можно выделить:
- электронный датчик давления масла;
- механический датчик давления масла;
Первый вариант часто называется аварийным, так как он работает по принципу «есть давление» или «нет давления». При этом точных данных устройство не дает.
Как правило, основной его задачей является только информирование о том, что в двигателе давление масла упало до критической отметки и мотор нужно срочно глушить.
Само собой, минусом такого датчика является то, что зачастую даже если водитель успевает быстро заметить загорание лампочки и заглушить двигатель, без последствий для ДВС это не обходится.
В свою очередь, механический датчик достаточно точно определяет давление масла. Благодаря этому по стрелочной шкале можно понять, какое давление масла в двигателе, как оно изменяется, когда мотор начал работать в условиях масляного голодания и т.д.
Также добавим, что некоторые авто имеют сразу два датчика, то есть решения обоих типов. Это позволяет точно определить давление масла, а также вовремя среагировать на сигнал, который посылает датчик аварийного давления масла, если давление критически низкое.
Если рассматривать принцип работы датчика масла, тогда электронный аналог намного проще, чем механический. С одной стороны, это означает более высокую надежность, хотя с другой именно такое решение не способно отобразить точные данные по давлению.
Конструктивно электронный датчик масла включает в себя:
- корпус;
- мембрану;
- контакты;
- толкатель.
Указанный датчик подключен к электрической цепи, куда также интегрирована лампочка-индикатор аварийного давления. Когда мотор заглушен, мембрана выпрямлена и толкатель задвинут, а контакты замкнуты. Если в это время подать питание на датчик, лампочка аварийного давления масла загорится, что обычно водители наблюдают во время пуска двигателя.
После того, как мотор начал работать и маслонасос создал нужное давление, указанное давление масла продавливает мембрану, которая контактирует с толкателем. Толкатель попросту размыкает контакты, лампочка масла на панели приборов гаснет. Если же давление неожиданно упадет ниже допустимого, контакты замкнутся и загорится аварийный индикатор. То же самое произойдет, если неисправен датчик.
Механический датчик давления масла сложнее, в его устройстве можно выделить: корпус, мембрану, толкатель, ползунок, а также нихромовую обмотку и дополнительные элементы.
Работает такой датчик подобно электронному, то есть масло давит на мембрану, которая двигает толкатель. Далее от толкателя усилие передается на механизм, меняющий сопротивление. Благодаря такой работе данные по давлению поступают на стрелочный указатель на панели приборов.
При этом показания более точные, а сами данные будут отличаться в зависимости от того, в каком положении находится ползунок на пластине с нихромовой обмоткой. В результате водитель может не только заметить критическое снижение давления, но и вовремя обнаружить, что мотор работает в условиях масляного голодания или сниженного давления смазки.
Принципы измерения давления
Измерение давления осуществляется непосредственно путем отклонения диафрагмы или датчиком усилия.
Прямое измерение давления
Поскольку все резисторы более или менее зависят от давления (волюметрический эффект), при необходимости измерения очень больших давлений (>104 бар) теоретически было бы достаточно просто ввести электрический резистор в находящуюся под давлением среду. С другой стороны, резисторы в то же время более или менее зависят от температуры, а эту характеристику обычно очень сложно подавить. Кроме того, представляет сложности герметичный вывод их соединений из напорной среды. Капсулированные емкостные измерительные модули имеют более благоприятные характеристики и их проще изготавливать.
Емкостные датчики давления
Однако емкостные датчики давления, в отличие от инерционных (см. «Ускорение, скорость вращения вокруг вертикальной оси»), используются удивительно редко, хотя могли бы иметь похожие преимущества (особенно в плане точности). Это связано с одним важным отличием от других упомянутых датчиков, а именно с тем, что датчики давления должны находиться в непосредственном контакте с измеряемой средой. Ее диэлектрические свойства практически всегда влияют на калибровку таких емкостных датчиков. Это значит, что калибровка в этом случае не только будет зависеть от среды, но и станет невозможной без нее (т.е. в «сухом» состоянии). Четкого разделения на сегодняшний момент удалось добиться только за счет значительных технических затрат.
Диафрагменные датчики
В наиболее распространенном методе измерения давления (также и в автомобилестроении) в качестве промежуточной ступени используется тонкая диафрагма.
Полупроводниковый датчик абсолютного давления
Строго говоря, деформация диафрагмы зависит от разности давления, воздействующего на ее верхнюю и нижнюю стороны. Соответственно, существует четыре основных типов датчиков давления:
- Датчик абсолютного давления;
- Датчик опорного давления;
- Датчик барометрического давления;
- Датчик дифференциального давления.
Что измеряют датчики давления
Измеряемое давление определяется как ненаправленная сила, действующая во всех направлениях в газах и жидкостях. Оно очень хорошо распространяется в гелеобразных веществах и мягких герметизирующих составах, используемых время от времени для разных целей (рис. «Измерение давления» .
- Давление во впускном трубопроводе и давление наддува (1-5 бар);
- Давление в электропневматических тормозах (10 бар);
- Давление воздуха в подвеске (16 бар);
- Давление в шинах (5 бар, абсолютное) для контроля давления в шинах;
- Давление в гидроаккумуляторе (около 200 бар) системы ABS, усилителя руля;
- Давление в амортизаторах (200 бар) для систем управления подвеской;
- Давление хладагента (35 бар) системы кондиционирования воздуха;
- Управляющее давление (35 бар) в автоматической трансмиссии;
- Давление в главном и колесном тормозных цилиндрах (200 бар);
- Избыточное и вакуумное давление в топливном баке (0,5 бар);
- Давление в камере сгорания (100 бар, динамическое) для определения перебоев зажигания и детонации;
- Секционное давление впрыска в дизеле (1000 бар, динамическое) для регулирования;
- Давление в магистрали, общая дизельная магистраль (1800 бар);
- Давление в магистрали, прямой впрыск бензина (200 бар).
Принцип работы механического датчика
Самый простой вариант датчика — колпачки с различными цветовыми индикаторами (как правило, красный, желтый, зеленый) под прозрачной крышкой. Они накручиваются на ниппеля шин взамен штатных колпачков. Внутри такого датчика находится поршень, который перемещается в зависимости от давления в шине. Красный цвет, как нетрудно догадаться, будет сигнализировать о критически низком давлении, зеленый об оптимальном.
Конечно, такой прибор прост и удобен, однако имеет ряд серьезных недостатков.
- Низкая точность и ненадежность показания — ведь нормы давления в шинах для разных автомобилей разные, а колпачок сигнализирует красным при достижении определенной величины давления, которая для некоторых моделей автомобилей вполне может быть нормальной.
- Находясь в салоне автомобиля, Вы не сможете контролировать давление.
- Избыточное давление в шинах таким способом не определить.
Большими возможностями обладают электронные системы контроля. Такие системы обозначаются английской аббревиатурой TPMS (Tire Pressure Monitor System). В США и Европе TPMS в настоящее время устанавливается в каждый выпускаемый автомобиль, как того требует закон. Современные датчики TPMS определяют не только давление воздуха в шинах, но и его температуру, а также ускорение автомобиля.