Принцип работы расходомера электромагнитного
Содержание:
- Принцип работы расходомера. Монтаж и настройка
- Виды
- Проверка и настройка приборов
- Виды расходомеров
- Время-импульсные ультразвуковые счетчики
- Расходомеры
- Хороший расходомер
- Значение надписей и символов на счетчиках
- Расчет
- История создания и принцип действия ультразвуковых расходомеров
- Балансировка отопительных контуров
Принцип работы расходомера. Монтаж и настройка
При монтаже коллектора и подключении нагревательных контуров теплых полов расходомер ставится на собирающую гребенку, в которую поступает отработанная вода. Когда температура теплоносителя достигает заданного значения, в обратной части коллектора срабатывает клапан, сужая или полностью перекрывая просвет для поступления воды. Чтобы система работала по описанной схеме, насосно-смесительный узел и коллектор оснащают термостатами.
Чтобы устранить эти основные ошибки, мы разработали ряд решений — один из них — распределитель с регулируемыми запорными клапанами, где мы можем регулировать поток данных в контуре пола, делая это на жаргоне инсталляторов, называемых ара. Установщик использует гаечный ключ с шестигранной головкой, чтобы удерживать самые длинные петлевые клапаны, а другая сторона помещает петлю в заданный контур и проверяет воспринимаемую температуру и, таким образом, устанавливает поток в контурах отопительных контуров напольного отопления.
Это часто связано с исправлением и дополнительным визитом к инвестору для улучшения контроля за отоплением. Некоторые производители клапанных манифольдов указывают в руководстве, сколько поворотов им нужно, чтобы повернуть клапан с ключом, чтобы получить поток, но на практике это не соответствует фактическим условиям, с которыми сталкивается установщик на сайте, и часто эти настройки являются неправильными.
Для того, чтобы уровень воды в прозрачной колбе совпадал с делениями шкалы по горизонтали, прибор должен занимать вертикальное положение. Поэтому для нормальной работы контролирующей группы коллектор следует устанавливать с использованием отвеса или пузырькового уровня, добиваясь строго горизонтального положения комплектующих оборудования. Установка коллектора с отклонениями может стать причиной некорректной работы отопительного оборудования.
Выполняется в соответствии с инструкций по монтажу и эксплуатации, обычно в следующей последовательности:
- при помощи ключа вкрутить расходомер в технологическое отверстие сборной части коллектора;
- вращая колбу расходомера против часовой стрелки, подготовить прибор для работы;
- демонтировать заводской предохранитель (обычно в виде кольца);
- выставить нужный напор поворотом по часовой стрелке латунного кольца в корпусе до нужной отметки — место расположения поплавка будет демонстрировать выполненную юстировку;
- для предотвращения механических повреждений прибора закрыть латунное кольцо специальной накладкой;
- проверить работу прибора в составе всей системы отопления.
Виды
Конструкция разных моделей комбинированного типа измерительно-регулировочных поплавковых водомеров почти не отличается:
Типы водомеров по функциональности для коллектора отопительного пола:
- измеряющий — к нему надо устанавливать перекрывной клапан, вентиль которого для настройки поворачивает пользователь в зависимости от показываемых водомером значений;
- регулирующий — только для распределения теплоносителя;
- комбинированный — совмещены два типа, с вмонтированным вентилем. Некоторые модели могут производить автоматическую настройку.
Для напольного обогрева чаще всего используют первый и второй типы поплавковых ротаметров.
Проверка и настройка приборов
Для того, чтобы прибор показывал стабильно точные результаты измерений, его необходимо проверять не реже 1 раза каждые 4 года. Процедура проверки включает:
- проверку работоспособности устройства;
- стендовую проверку на соответствие стандартам метрологии;
- изменение настроек в соответствии с актуальными требованиями и внесение их в память расходомера;
- запись данных о проверке в паспорт или оформление нового паспорта.
Для того, чтобы на контрольно-измерительное устройство не подвергалось воздействию помех, используются цифровые протоколы. Они снижают влияние фона и электромагнитных шумов на тракты, передающие сигнал от датчиков к процессору. Настройка фильтров, помогающих обработать сигнал, осуществляется с помощью специального программного обеспечения.
Виды расходомеров
Кориолисовые расходомеры на сегодняшний день считаются наиболее точными расходомерами. Кориолисовые расходомеры идеально подходят для любых применений, где высокая точность измерений является ключевым фактором для обеспечения качества продукции, безопасности и рентабельности. Такие приборы благодаря своей высокой точности, сохраняющейся в широком диапазоне внешних условий, и нетребовательности к обслуживанию часто находят применение в узлах коммерческого учета.
Подробнее
Измерители дифференциального давления — одна из самых старых промышленных технологий измерения, которая до сих пор используется и имеет подтвержденную историю эффективности. Наши исследования показывают, что известная на протяжении 100 лет конструкция отлично подходит и для современных расходомеров. Расходомеры на базе измерения дифференциального давления наиболее широко применяются при технологических промышленных измерениях и регулировании, в системах коммерческого учета природного газа и в многих других областях применения.
Подробнее
На современном рынке систем точного измерения расхода Электромагнитные расходомеры являются вторым по размеру сегментом после традиционных расходомеров по перепаду давления, но, вероятно, в будущем встанут на первое место. Электромагнитные расходомеры великолепно подходят для измерений объемного расхода проводящих сред благодаря превосходным характеристикам в широком спектре применений.
Подробнее
Многофазные расходомеры и расходомеры жидкого газа Roxar применяют комбинацию измерений электрического сопротивления и единой высокоэнергетической гаммы для определения фазовых долей в сочетании с эффектом Вентури и с взаимной корреляцией для измерения скорости. Применения включают в себя: прямой мониторинг устья скважины, тестирование большого количества скважин, распределение и фискальный учет, а также мониторинг обратного потока сланцевой скважины.
Подробнее
Турбинные расходомеры — это простой способ точного измерения расхода жидкости в чистых, идеально самосмазывающихся жидкостях. Турбинные расходомеры используются для коммерческого учета во многих областях нефтяной и химической промышленности. Турбинный расходомер измеряет объемный расход, но, в отличие от вихревого расходомера, он может измерять низкие скорости потока и жидкости с более высокой вязкостью с очень высоким разрешением и точностью.
Подробнее
Ультразвуковые расходомеры обычно используются для коммерческого учета и измерения нефти и газа. Ультразвуковой расходомер измеряет скорость жидкости в закрытой трубе с помощью ультразвуковых импульсов. Однако условия процесса, такие как состав, давление и температура, определяют, какой тип ультразвукового расходомера является наиболее подходящим.
Подробнее
Время-импульсные ультразвуковые счетчики
Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).
Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:
- трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
- клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
- сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
- штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
- накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.
В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.
Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.
Расходомеры
Ультразвуковой расходомер – измеряет акустические эффекты, возникающие при движении вещества, расход которого необходимо измерить.
Достоинство ультразвуковых расходомеров:
- не требует врезки в систему
- отсутствие подвижных частей, нет износа
- высокая точность
- время реакции, быстродействие
- измерение расхода агрессивных и грязных сред
Стационарные ультразвуковые расходомеры воды серии UXF2, UXF3, U, и UFC применяют для постоянного бесконтактного измерения расхода в трубах. Работают совместно с ультразвуковыми детекторами серии SX1, SX2, SX3. Данные расходомеры легкие в установке, простые в использовании. Выходной сигнал: 4-20мА, 1-5В, импульсный и релейный выход. Обмен данными через RS232 или RS-485.
Переносные ультразвуковые расходомеры серии PUB, PUF, PSX2 применяются для контроля работы стационарных расходомеров или в случаях разового измерения расхода. Измеряют расход и скорость потока. Способны непрерывно работать более 20 часов.
Выходной сигнал: 4-20мА, импульсный. Обмен данными через RS232 или RS-485. Расходомеры серии PSX2 можно приобрести со встроенным принтером. Прочный корпус с герметизацией NEMA 3X позволяет расходомерам находиться под дождем.
Данные приборы прекрасно подойдут для тяжелых условий работы.
Массовые расходомеры
Массовые расходомеры Dwyer предназначены для измерений массового расхода и массы (количества), давления и температуры среды. Они поддерживают функции суммирования потока, аварийные сигналы по потоку (высокий или низкий поток), температуре и давлению.
По выбору доступны выходные сигналы от 0 до 5 В пост. тока, от 0 до 10 В пост. тока, от 4 до 20 мА и релейные выходы. Цифровой интерфейс RS-485 и RS-255 для дистанционного управления.
Для удобства измерения расхода различных газов имеют внутренние коэффициенты преобразования для более 30 газов.
Регуляторы расхода газа
Регуляторы расхода газа предназначены для измерения и поддержания заданного значения расхода.
Регуляторы легко программируются для различных задач, имеют функцию автоматической настройки, данная функция обеспечивает оптимальное быстродействие при управлении потоками. При включении питания автоматически проводится самодиагностика.
Имеют внутренние коэффициенты преобразования для более 200 типов газов. Интерфейс RS-485 позволяет дистанционно настраивать и снимать показания регуляторов.
Расходомеры газа широко применяются в различных областях промышленности, таких как химическая, фармацевтическая, пищевая. Идеально подходит для лабораторий, широко применяются в производстве технических газов.
Турбинные расходомеры
Турбинный расходомер — это высокочувствительный прибор, в котором осевая турбина свободно вращается в потоке жидкости или газа за счет энергии измеряемого потока. Количество оборотов турбинного колеса в единицу времени равна объему жидкости или газа, число оборотов колеса равна средней скорости потока.
Особенности турбинных расходомеров:
- высокая точность
- измерение больших расходов
- применение при высоких давлениях
- широкий диапазон рабочих температур
- стойкость к загрязнениям
Турбинные расходомеры завода Dwyer подходят для различных промышленных, лабораторных и других измерений потока. Имеют встроенный ЖК-дисплей, показывающий текущий расход. Записывают и регистрируют данные технологического процесса по расходу.
Хороший расходомер
В магазине вы можете соприкоснуться большим выбором самых разных ротаметров, благодаря этому, чтобы подобрать хороший экземпляр, вы можете подыскивать его по перечисленным ниже свойствам:
Расходомер должен владеть хорошим корпусом без сколов и выступов
Материал корпуса – латунь, однако сверху его накрывают никелем.
Внутренняя пружина ротаметра обязана быть сделана из нержавейки.
Поликарбонатный материал – пример замечательного материала для светопрозрачной колбы расходомера, ведь данный материал выдержит большие температуры, а еще некоторые физические влияния.
Определить в магазине это нереально, благодаря этому нужно будет довериться изготовителю и обратить собственное внимание на показатели: прибор должен держать температуру до 110°C, а еще давление в 10 бар.
Самая большая пропускная способность ротаметра не должна быть меньше 2-4 метров кубических в час. Измерительная шкала должна отвечать данным показаниям.
Гарантия на такие изделия даётся большая, очень часто от 5 лет.. Заключение
Заключение
Коллектор для гидравлического пола с подогревом с расходомерами дает возможность контролировать расход носителя тепла, что обеспечивает оптимальную температуру пола в каждом помещении, подключённом к данному контуру. Подобный вариант устройства системы тёплого пола дополнительно бережет средства, ведь вы затрачиваете меньше энергии на водонагрев.
Пол с подогревом от 2-ух контурого котла.
Здраствуйте. кто нибудь сталкивался с диагональным подключением коллекторов ?. дело в том что монтирую у себя отопление (лучевая разводка) и теплые полы. имеются два коллектора один с расходомерами для полов другой без для радиаторов. для полов понятно весь расход настраиваемый а для радиаторов нет. вопрос если коллектор для радиаторов подключить подводящие трубы по диагонали а не односторонним методом как обычно будут ли равномерно прогреваться радиаторы. по сути это таже двухтрубка попутного направления а не тупикового типа. я имею в виду может так давление более менее равномерно будет распределяться по радиаторам
Это что то типа диагонального подключения радиатора? Если смотреть все в целом то думаю сработает ваша идея а так просчитывать надо. Не легче отбалансировать?
отбаланировать не получается т.к. краны шаровые бабочки стоят на радиаторах.
Я не исключаю вашу затею. Если не получается отбалансировать тогда расходомеры вкрутите в коллектор подачи или же попробуйте вашим методом эксперемент поставить.
r072 , не там копаете. Если диагональное подключение не оправдано удобством, не стоит заморачиваться.
Эту дичь я не заметил. И да, это дичь.
дич на охоте заметите а у меня вопрос ребром был по гидравлике. меня не удобство интересует а мне коллектор установили без расходомеров 12 вых. сказали так надо. 12 веток все разные по длине также как и радиаторы по секционности. у каждого контура свое сопротивление вследствии чего у меня радиаторы греют по разному и балансировать ихними кранами я замучался. вот и спрашиваю про диагональное включение коллекторов а не односторонним методом как обычно. к примеру многие включают радиатор 12 секций боковым односторонним методом потом 3-4 ребра не догревают начинают трубку вворачивать внизу радиатора до 8 секцции дабы чтобы жидкость не могла уходить в обратку с верхней подачи по ближним секциям в результате чего давление перебрасывается на дальние секции хотя можно было всего лишь подключить его по диагонали и весь вопрос. только видимо не всем нравится такое расположение кранов. вот и в моем случае хотя я в этом не силен просто интересуюсь у вас у спецов может кто то уже так делап или знает будет такой вариант работать или нет нужен точный ответ и если нет то почему нет. по сути это таже двухтрубная система попутного направления получается . если нарисовать эту двухтрубку на листе и собрать его в гармошку тот же коллектор получаеся только ветки длинные человек ответивший раннее более менее понял суть
Значение надписей и символов на счетчиках
Условные обозначения и надписи на водомерах могут многое рассказать о приборе. Поэтому нужно научиться их расшифровывать, чтобы выяснить те или иные возможности изделия и определить, какой счетчик подойдет для конкретных условий.
Производители наносят на устройства четыре основных обозначения:
- Qmax — предельная скорость потока, не вызывающая погрешностей в работе прибора. Работать при таком значении скорости потока прибор может максимум 1 час. За этим обязательно должен следовать перерыв.
- Qn — оптимальный расход для водомера. По отношению к его максимальной возможности, этот параметр на 50% меньше. В случае, когда сквозь корпус прибора проходит объем воды, равный нормальному расходу, он будет функционировать безошибочно. Устройство сможет пройти поверку и его еще долго не придется менять на новый.
- Qmin — наименьшая скорость потока, которая при измерении расхода воды дает самую незначительную погрешность.
- Qt — давление, при котором водомерное устройство эксплуатировать невыгодно, поскольку оно начинает работать со значительной погрешностью. При этом трудно предугадать с каким знаком будет значение погрешности — может быть как минус, так и плюс к реальным показаниям.
Кроме этих обозначений, на корпусе водомера нанесена максимальная температура, при которой прибор может функционировать.
В продаже есть счетчики для горячей и холодной жидкости. Встречаются и универсальные, работающие в большом температурном диапазоне без погрешностей
На расходомерах холодной воды присутствует надпись 40 °C, а корпус синего цвета. Кожух расходомеров для горячей воды имеет красный цвет или, что встречается значительно реже, черный. На этом фоне обязательно будет надпись 90 °C.
Если централизованно подается под давлением вода, температура которой превышает 90 °C, нужно остановить выбор на счетчике, имеющем надпись 150 °C.
Расчет
Рассчитать, какая температура нагрева потребуется для отопления конкретного помещения можно только экспериментальным путем, то есть пользователь должен испробовать несколько настроек, анализируя время достижения комфортной среды в комнате, уровень температуры там. Благо, с ротаметром это осуществить намного проще, чем возиться вручную с клапанами подводки, помпой.
Нет фиксированных значений для помещений, данный нюанс обусловлен тем, что на удержание тепла в комнате влияет множество факторов: теплоизоляция, площадь, протяженность змеевика и подобное.
На комбинированных моделях можно сделать преднастройку (обычно так и делают) по количеству оборотов вентиля – каждый полный виток уменьшает/увеличивает просвет на фиксированное значение. Можно воспользоваться следующим способом:
- Вначале исчисляется требуемый каждому контуру объем теплоносителя, его процентная доля относительно общего количество жидкости для всей системы.
- По полученному результату выставляют начальную позицию вентиля (кольца) для каждой секции.
- Финишная регулировка расходомера делается в процессе функционирования системы, исходя из реальной установившейся температуры, по ощущениям комфортности.
Как мы уже отметили, для одной-двух комнат или одинаковых по своим параметрам помещений коллекторная группа с расходомерами желательная, но не так значима, как для домов, квартир, где отапливается несколько зон с разными размерами.
При равном расходе теплоносителя для контуров большой и маленькой комнаты, достижение нужной температуры в них будет разным. Чем больше площадь, ниже качество теплоизоляции, тем уровень обогрева будет ниже. Соответственно, для значительных по размеру помещений потребуется более интенсивный и значительный поток. И, наоборот, в меньшем объекте нужно установить расход ниже, иначе в нем будет жарко. Но и тут есть нюанс, если в нем плохая теплоизоляция, то значения могут сравняться.
Как видим, на расчет влияет множество факторов, комфортный режим зависит даже от поры года. Регулировка также называется балансировкой, так как распределяется ограниченный ресурс от котла, изменение на одном змеевике влияет на другие. Настройка может производиться часто, поэтому простота, обеспечиваемая расходомерами, крайне затребована.
Приведем пример. Внутри дома устанавливается напольная система водяного отопления для ванной и иной комнаты, например, для гостиной. Без ротаметра газовый котел будет нагревать жидкость для указанных помещений одинаково, установится один температурный режим. Для гостиной он может быть комфортным, но в ванной будет жарко.
Для отопления первой требуется больше нагретой воды из котла, для маленького санузла меньше. Быстро, комфортно привести температуру каждой комнаты к одинаковому уровню или установить его разным, но комфортным, учитывая особенности помещения, позволит водомер.
Также при балансировке важно обращать внимание на протяженность трубок контура независимо от его конфигурации. Отметим еще некоторые достоинства расходомеров, аппарат позволит:
Отметим еще некоторые достоинства расходомеров, аппарат позволит:
- легко контролировать объем жидкости определенной температуры, направляемой на обогрев, что также тянет за собой возможность более рационально управлять источником энергии (котлами). Если таковой электрического типа, то данный нюанс весьма актуальный;
- равномерно прогревать все ветви, избежать колебаний температуры, что повысит комфорт. С другой стороны, позволит выключать отопление там, где это не нужно, или уменьшать/увеличивать его как угодно по решению пользователя;
- можно вести визуальный контроль за объемами теплоносителя текущего от котла по трубкам магистрали. Взглянув на расходомеры, на их колбы с градуировкой и указателем можно будет сразу определить визуально уровень отопления помещения (при этом также надо будет сопоставить его размеры и прочие параметры), сколько расходуется ресурса.
История создания и принцип действия ультразвуковых расходомеров
В 1880 г. Пьер и Жак Кюри открыли, что под действием силы на поверхности ряда материалов появляются электрические заряды. Данный эффект был назван прямым пьезоэффектом, а деформация материалов под воздействием электрического поля – обратным пьезоэффектом.
Данное открытие начало применяться на практике с 1917 г., когда французский математик и физик Поль Ланжевен изобрел ультразвуковой эхолокатор для обнаружения подводных объектов.
В 1950 — 1960 годах японский физик Шигео Сатомуро, работавший в области медицины, впервые разработал и применил ультразвуковые приборы, основанные на методе Доплера, для мониторинга тока крови в теле человека. Вскоре после этого были разработаны и стали внедряться доплеровские ультразвуковые расходомеры для самых различных типов жидкости.
Заложенный в их основе принцип был открыт и опубликован известным австрийским математиком и физиком Кристианом Доплером в 1842 году. Из анализа волновой теории он сделал выводы, что если источник света или звука движется в направлении приемника, то это увеличивает частоту принимаемого сигнала, а если источник света или звука или ультразвука движется в направлении от приемника, то это уменьшает частоту принимаемого сигнала. Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга.
Однако приборам для измерения скорости течения жидкости, работающим на методе Доплера, необходимо наличие частиц или пузырьков воздуха в потоке жидкости и этот метод не подходит для чистой воды.
В результате в 1990-х годах был разработан и начал широко применяться время-импульсный метод, который обеспечивал высокоточные измерения в потоке однородной жидкости или газа, без существенных включений и разделений на фракции.
Но даже при работе в воде с достаточным количеством взвешенных частиц метод Доплера имеет существенный недостаток. Он не учитывал распределение скоростей движения жидкости по слоям потока, что приводит к существенным ошибкам при измерениях в больших трубах и каналах. Известно, например, что в открытых каналах скорость движения воды у дна существенно ниже, чем скорость ближе к поверхности, разница между этими скоростями зависит от шероховатости дна и стенок канала, наличия отложений и других факторов, которые учитываются в Доплеровских счетчиках за счет использования теоретических коэффициентов, т.е. учитываются весьма приблизительно.
Для более точного определения поправочных коэффициентов была предложена калибровка приборов на каждом месте измерения. Однако вскоре выяснилось, что калибровочный коэффициент зависит от текущего уровня и скорости потока, что сделало требуемую систему калибровки весьма сложной и практически неприменимой. В результате и сегодня погрешность, которую дает Доплеровский расходомер, во многих случаях получается достаточно большой.
Новым существенным шагом в области развития ультразвуковых технологий измерения расхода стало создание в 2000 году метода кросс-корреляция, который позволяет определить скорость движения жидкости в разных слоях.
Метод также требует наличия частиц в потоке и основывается на математическом сопоставлении (корреляции) ультразвуковых фотографий потока, получаемых с высокой частотой. В результате данного сравнения определяется изменение положение частиц во всех слоях потока за известный промежуток времени и определяется средняя скорость без ввода каких-либо теоретических коэффициентов.
В настоящее время принцип работы ультразвукового расходомера воды базируется на одном из указанных выше методов.
Балансировка отопительных контуров
При подключении к этажным разводящим коллекторам нескольких колец радиаторного или напольного отопления нужно стремится к тому, чтобы длины этих колец и количество радиаторных секций, «сидящих» на каждом отопительном кольце, были примерно одинаковыми. То есть, расход теплоносителя в каждом из отопительных колец, подключенных к одной коллекторной группе, был одинаковым. Но всегда ли это возможно? Например, мы делаем контур «теплых полов» на кухне, в гостиной и в ванной комнате и подключаем их к одной коллекторной группе. Совершенно очевидно, что площади полов в этих помещениях различаются и длина трубопроводов, укладываемых в полы, тоже различается, естественно, что и расход теплоносителя в трубопроводах различной длины тоже будет различаться. В коротких отопительных кольцах гидравлическое сопротивление труб будет меньше и теплоноситель будет циркулировать в них быстрее, чем в длинных отопительных кольцах. Значит, при равной температуре теплоносителя на коллекторе подачи в одних помещениях полы будут перегреваться, а в других они будут холодными. То же самое относится и к радиаторным отопительным кольцам с различным количеством секций и разной длиной трубопроводов, подсоединенных к одной этажной коллекторной группе: в одних помещениях будет холодно, в других жарко. Мы уже знаем, что расход теплоносителя в радиаторном отоплении можно регулировать установкой на каждый радиатор терморегуляторов, а по сути вентилей, выполняющих количественную регулировку расхода. Примерно то же самое мы можем сделать и на «теплых полах». Балансировку отопительных контуров «теплых полов», присоединенных к одной коллекторной группе, можно решить двумя способами. Первый, сделать все кольца одинаковой длины и распределить их в полах. Например, один контур будет в ванной комнате, два контура — на кухне и три контура — в гостиной. Второй, сделать всего три контура по количеству помещений, но присоединить их к коллекторам не напрямую, а через специальные приборы — расходомеры или балансировочные краны. В данном случае название «расходомер» употребляется не как название измерительного прибора, а как наименование специального вентиля выполняющего функцию количественного регулирования расхода теплоносителя. Расходомеры некоторых фирм присоединяются только к обратному коллектору.
рис. 37. Балансировочная коллекторная группа для отопительных контуров теплых полов
Интересную коллекторную группу (рис. 37) предлагает : их подающие коллекторы укомплектованы расходомерами, а обратные коллекторы — терморегуляторами, таким образом, подающий коллектор направляет в каждый отопительный контур строго определенное количество теплоносителя, а обратный коллектор открывает и закрывает отопительные контуры по мере остывания его в полах. Кроме того, подающий коллектор имеет автоматический воздухоотводчик и оба коллектора соединены между собой байпасом со встроенным перепускным клапаном. Через автоматический воздухоотводчик из всей системы «теплых полов» отводится воздух, а если в результате потепления на улице терморегуляторы отключат контуры, то сработает перепускной клапан и сбросит резко возросшее давление.
Необходимо отметить, что расходомеров, как измерительных приборов и регулирующих вентилей производится довольно много. Если, например, вами будет использован расходомер, выполняющий только измерительные функции, то он должен устанавливаться вместе с обычным вентилем. Открыванием или закрыванием вентиля по шкале расходомера устанавливается требуемое показание расхода теплоносителя.
Как производится балансировка отопительных контуров? Общий расход теплоносителя через коллектор (л/мин) принимается за 100%. Затем в процентах рассчитывается расход для каждого отопительного контура, например, это будет 20, 30 и 50% и пропорционально переводится в литры в минуту. Закручиванием или выкручиванием головки расходомера (или вентиля при измерительном расходомере) на приборах выставляются нужные показания. Необходимо заметить, что таким образом можно сделать расчетную балансировку контуров. Фактическая балансировка производится по фактическим показаниям расхода теплоносителя через коллекторную группу, для этого перед коллектором подачи нужно установить измерительный расходомер и на основании его показаний «раскинуть» общий расход по подключаемым к коллектору контурам.