Взрыв

Что такое взрыв

Взрыв определяют как внезапную реакцию окисления или разложения с повышением температуры, давления или обоих этих параметров одновременно. Это относится к химической реакции, которая при одновременном контакте и в определённом соотношении кислорода (воздуха), горючего материала и источника воспламенения вызывает резкое повышение температуры и давления. Если возникающее тепло не может быть отведено достаточно быстро, происходит внезапное объёмное расширение сопутствующих газов и выделение большого количества тепловой энергии, сопровождаемое волной давления — взрывом.

Угроза взрыва

Чтобы произошел взрыв, одновременно должны присутствовать следующие факторы:

  • наличие легковоспламеняющегося материала в производственном процессе или в окружающей среде;
  • кислород (воздух);
  • источник возгорания;
  • определённое соотношение кислорода и горючего материала.

К легковоспламеняющимся материалам относятся пары, взвеси, газы, пыль. Они могут появиться в результате утечки в процессе производства, а также при транспортировке или хранении. Пыль от материалов, которые измельчаются для дальнейшей обработки, особенно распространена в промышленных зонах. Взрывы пыли могут иметь такие же разрушительные последствия, как и взрывы газа.

Горючие материалы, контактируя с кислородом, воспламеняются только в определенном соотношении и при наличии источника возгорания. Решающую роль здесь играют температура вспышки материала и предел его взрыва.

Температура вспышки — низший температурный предел для горючих жидкостей, при котором образуется паровоздушная смесь. Для такой гибридной смеси соотношение концентраций определяет, может ли образоваться взрывоопасная атмосфера. Это описывает пределы взрываемости отдельных материалов: каждый горючий материал имеет определенный диапазон в виде смеси с кислородом, в которой может произойти взрыв. Как при слишком высоких, так и при чрезмерно низких концентрациях происходит не взрыв, а стационарная реакция, или горение вообще отсутствует. Смесь взрывоопасна только при воспламенении в диапазоне между верхним и нижним пределами взрываемости.

Пределы взрываемости зависят от давления, температуры и концентрации кислорода. Кроме того, существуют химически нестабильные, или пирофорные вещества (цезий, рубидий, белый фосфор), которые воспламеняются только при контакте с кислородом или воздухом

В обращении с ними требуется особая осторожность.

Это касается и пылевых скоплений, опасность самовозгорания которых возрастает с увеличением толщины их слоя. Изолирующий эффект пыли может вызвать аккумуляцию тепла, что приведет к самовозгоранию.

Причины взрывов

Взрывоопасные ситуации могут возникать повсюду, где имеются необходимые и достаточные для этого условия: на производственных предприятиях, объектах инфраструктуры, в жилых помещениях.

К самым распространённым причинам взрывов относятся:

  • нарушение технологических процессов на производствах;
  • несоблюдение правил хранения, перевозки горючих материалов и техники безопасности при работе с ними;
  • неправильная эксплуатация или поломка газового, парового оборудования.

Отдельно следует назвать причиной взрывов преднамеренное использование поражающих боеприпасов и оружия в военных, террористических и противоправных действиях.

Повреждения осколками оболочки снарядов

Взрывчатые вещества могут быть заключены в различные оболочки — стальные, металлические, деревянные, пластмассовые, из сплавов алю­миния и т.п. В момент взрыва оболочка и детали взрывного устройства разрушаются и осколки разлетаются в стороны. Осколки стального кор­пуса снаряда могут поразить на расстоянии, превышающем средний раз­мер осколка в 8 тыс. раз, а алюминиевого — в 2,5 тыс. раз (Г.И. Покров­ский). Чем ближе пострадавший находится к снаряду, тем больше осколков обнаруживается в теле.

Характер повреждений обусловлен бал­листическими свойствами осколков, фор­мой, массой, величиной, скоростью по­лета и характером полета (кувырканием) осколков, расстоянием от эпицентра взры­ва до пострадавшего, в связи с чем по­вреждения крайне вариабельны: от ссадин до осколочных ранений скелета и внутрен­них органов (рис. 157). Чаще образуются раны, сходные по морфологии с пулевы­ми. При взрыве снаряда, заключенного в оболочку из сплавов алюминия, в кото­рой содержатся шарики, — повреждения напоминают дробовые ранения.

От взрыва ВВ без оболочки (толовые шашки и т.д.) металлические осколки в те­ле отсутствуют, за исключением мелких фрагментов детонатора.

Поражающие факторы

Поражающие факторы взрыва бывают 2 видов:

Основные

  • Ударная волна. Это переходная область, состоящая из сжатого воздуха. Она молниеносно распространяется во все стороны от центральной точки взрыва.
  • Осколочные поля. Это косвенное воздействие ударной волны, заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею. Сюда также относят обломки боеприпасов, взрывных устройств.

Вторичные

  • Разрушительное действие обломков строений, осколков стекол, витрин.
  • Пожары.
  • Обрушения высотных зданий.
  • Заражение среды (воды, земли, воздуха).
  • Разрушения производственных и социальных объектов.

Человеку взрывная воздушная волна, а также продукты взрыва наносят различные по тяжести травмы, нередко несовместимые с жизнью. Повреждения различаются по тяжести в зависимости от зоны, в которой человек находился в момент взрыва.

Выделяют 3 зоны действия взрывной волны. Самыми губительными для человека являются первые две. Тело разрывает на части сжатым воздухом, а также происходит обугливание из-за высокой температуры внутри области взрыва.

До 3 зоны доходят лишь отголоски взрывной волны. Если человек находится в этой зоне, то взрывная волна воспринимается им, как сильный резкий воздушный удар. Здесь возможны повреждения и разрывы внутренних органов, переломы, повреждения барабанных перепонок, черепно-мозговые травмы средней и тяжелой степени.

Значительные повреждения человек получает, когда волна его с силой отбрасывает и ударяет об землю или различные сооружения. Тяжелые травмы, создающие угрозу для жизни, люди получают если при взрыве остались без укрытия. Также опасно находится в момент прихода волны в положении стоя.

Кратко поражающие факторы взрыва:

  • воздушная ударная волна;
  • струи газов;
  • осколки;
  • высокая температура пламени;
  • световое излучение;
  • резкий звук.

Необходимо разделять основные поражающие факторы ядерного взрыва:

  • ударная волна;
  • световое излучение;
  • проникающая радиация;
  • радиоактивное загрязнение и электромагнитный импульс (ЭМИ).

К поражающим факторам ядерного взрыва относятся также рентгеновское излучение и сейсмические волны. Рентгеновское излучение является одним из основных поражающих факторов для баллистических ракет и космических аппаратов.

Терминология

Сложность и разнообразие химии и технологии взрывчатых веществ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Действующая редакция 2011 года принятой ООН Согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС) даёт следующие определения:

Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, флегматизаторы, металлические добавки и другие компоненты. Взрывчатое превращение взрывчатых веществ характеризуется следующими условиями:

  • высокая скорость химического превращения;
  • выделение тепла (экзотермичность процесса);
  • образование газов или паров в продуктах взрыва;
  • способность реакции к самораспространению.

В России в рамках стандартизации в области техногенных чрезвычайных ситуаций к взрывоопасным относят вещества, взрывающиеся при воздействии пламени или проявляющие чувствительность к сотрясениям или трениям большую, чем динитробензол.

Виды и типы взрывов

Выделяют три основных типа взрывов. Каждый из них может быть одинаково разрушительным и причинять колоссальный ущерб населению, инфраструктуре, окружающей среде.

Химические взрывы происходят в результате реакций разложения или соединения, сопровождающихся выделением теплоты. Следствием этого становится быстрое расширение выделяемого газа и образование ударной волны.

При механическом (физическом) взрыве внутри ограниченного пространства происходит расширение газа под высоким давлением. Выброс за пределы пространства избыточного давления создает ударную волну.

Ядерный взрыв происходит в результате реакции синтеза или деления, при которой очень быстро выделяется большое количество тепла и газа. Высвободившаяся энергия нагревает окружающий воздух и создает взрывную волну.

Вид взрыва зависит от свойств горючих материалов и их взаимодействия с атмосферным кислородом, который горит только с определённым количеством горючей субстанции (процесс окисления). В зависимости от силы взрыва и связанной с ним скорости распространения волны давления различают:

  • низкоскоростную детонацию;
  • дефлаграцию, или распространение процесса горения с дозвуковой скоростью;
  • детонацию, или распространение взрыва со сверхзвуковой скоростью.

Следствием всех типов взрывов являются ударное, тепловое и вибрационное воздействия на объекты, нередко приводящие к их разрушению или уничтожению.

Примечания

  1. Взрыв//Большая Советская Энциклопедия
  2. Водяник В.И. Горение и взрыв газов//Безопасность труда в промышленности N 1, 2005
  3. 12 Д. З. Хуснутдинов, А. В. Мишуев, В. В. Казеннов и др. Аварийные взрывы газовоздушных смесей в атмосфере : монография —М.:МГСУ, 2014
  4. Бейкер У. и др. Взрывные явления. Оценка и последствия т.1 —М.: «Мир», 1986
  5. Овчаренко Н.Л. Предупреждение взрывов в доменных и сталеплавильных цехах —М., 1963
  6. 12 Таубкин И.С. О терминологии в уголовно-правовой классификации взрывов//Теория и практика судебной экспертизы №1 (29) 2013
  7. Покровский Г.И. Взрыв и его действие —М., 1954

Космологические параметры

Возраст Вселенной может быть определен путем измерения постоянной Хаббла сегодня и экстраполяции назад во времени с наблюдаемым значением параметров плотности (Ω). До открытия темной энергии считалось, что во Вселенной преобладает материя ( Вселенная Эйнштейна – де Ситтера , зеленая кривая)

Обратите внимание, что вселенная де Ситтера имеет бесконечный возраст, а закрытая вселенная имеет наименьший возраст.

Значение поправочного коэффициента возраста F показано как функция двух космологических параметров : текущей фракционной плотности вещества Ω m и космологической постоянной плотности Ω Λ. В наиболее подходящие значения этих параметров приведены в поле в левом верхнем углу; Вселенная, в которой преобладает материя, показана звездой в правом нижнем углу.

Проблема определения возраста Вселенной тесно связана с проблемой определения значений космологических параметров. Сегодня это в основном осуществляется в контексте модели ΛCDM , где предполагается, что Вселенная содержит нормальную (барионную) материю, холодную темную материю , излучение (включая фотоны и нейтрино ) и космологическую постоянную . Дробный вклад каждого в текущую плотность энергии Вселенной дается параметрами плотности Ω m , Ω r и Ω Λ . Полная модель ΛCDM описывается рядом других параметров, но для целей вычисления ее возраста эти три, наряду с параметром Хаббла , являются наиболее важными.
ЧАС{\ displaystyle H_ {0}}

Если у кого-то есть точные измерения этих параметров, то возраст Вселенной можно определить с помощью уравнения Фридмана . Это уравнение связывает скорость изменения масштабного фактора a ( t ) с содержанием вещества во Вселенной. Изменяя это соотношение, мы можем вычислить изменение во времени на изменение масштабного фактора и, таким образом, вычислить общий возраст Вселенной, интегрировав эту формулу. Тогда возраст t задается выражением вида

тзнак равно1ЧАСF(Ωр,Ωм,ΩΛ,…){\ displaystyle t_ {0} = {\ frac {1} {H_ {0}}} F (\ Omega _ {r}, \ Omega _ {m}, \ Omega _ {\ Lambda}, \ dots)}

где — параметр Хаббла, а функция F зависит только от дробного вклада в энергосодержание Вселенной от различных компонентов. Первое наблюдение, которое можно сделать из этой формулы, заключается в том, что именно параметр Хаббла управляет возрастом Вселенной с поправкой, связанной с содержанием вещества и энергии. Таким образом, приблизительная оценка возраста Вселенной происходит по времени Хаббла , обратному параметру Хаббла. Со стоимостью околоЧАС{\ displaystyle H_ {0}}ЧАС{\ displaystyle H_ {0}}69 км / с / Мпк , время Хаббла оценивается как =1ЧАС{\ displaystyle 1 / H_ {0}}14,5 миллиарда лет.

Чтобы получить более точное число, необходимо вычислить поправочный коэффициент F. Обычно это нужно делать численно, и результаты для диапазона значений космологических параметров показаны на рисунке. Для значений Планка (Ом м , Ом Λ ) = (0,3086, 0,6914), показанных рамкой в ​​верхнем левом углу рисунка, этот поправочный коэффициент составляет примерно F = 0,956. Для плоской вселенной без какой — либо космологической постоянной, показанной звездой в нижнем правом углу, Р = 2 / 3 намного меньше , и , таким образом вселенная моложе на фиксированном значении параметра Хаббла. Чтобы сделать эту цифру, Ω r поддерживается постоянным (примерно эквивалентно поддержанию постоянной температуры реликтового излучения ), а параметр плотности кривизны фиксируется значением трех других.

Помимо спутника Planck, зонд Wilkinson Microwave Anisotropy Probe ( WMAP ) сыграл важную роль в установлении точного возраста Вселенной, хотя другие измерения должны быть сложены, чтобы получить точное число. Измерения реликтового излучения очень хороши при ограничении содержания вещества Ω m и параметра кривизны Ω k

Он не так чувствителен непосредственно к Ω Λ , отчасти потому, что космологическая постоянная становится важной только при малом красном смещении. Наиболее точные определения параметра Хаббла H получены по сверхновым типа Ia

Объединение этих измерений приводит к общепринятому значению возраста Вселенной, указанному выше.

Космологическая постоянная делает Вселенную «старше» при фиксированных значениях других параметров

Это важно, поскольку до того, как космологическая постоянная стала общепринятой, модель Большого взрыва затруднила объяснение того, почему шаровые скопления в Млечном Пути оказались намного старше возраста Вселенной, рассчитанного на основе параметра Хаббла и материальной Вселенной

Введение космологической постоянной позволяет Вселенной быть старше этих скоплений, а также объясняет другие особенности, которые космологическая модель, основанная только на материи, не могла.

Начало в жидком виде

История современных взрывчатых веществ начинается в 1846 году, когда итальянский ученый Асканио Собреро впервые получил нитроглицерин — сложный эфир глицерина и азотной кислоты. Собреро достаточно быстро обнаружил взрывчатые свойства бесцветной вязкой жидкости и потому поначалу назвал полученное соединение пироглицерином.

Альфред Нобель — человек, создавший динамит.
Трехмерная модель молекулы нитроглицерина.

По современным представлениям нитроглицерин — весьма посредственная взрывчатка. В жидком состоянии он слишком чувствителен к удару и нагреву, а в твердом (охлажденном до 13°С) — к трению. Фугасность и бризантность нитроглицерина сильно зависят от способа инициирования, а при использовании слабого детонатора мощность взрыва сравнительно невелика. Но тогда это было прорывом — мир еще не знал подобных веществ.

Практическое использование нитроглицерина началось лишь спустя семнадцать лет. В 1863 году шведский инженер Альфред Нобель конструирует пороховой капсюль-воспламенитель, позволяющий использовать нитроглицерин в горном деле. Спустя еще два года, в 1865 году, Нобель создает первый полноценный капсюль-детонатор, содержащий фульминат ртути. При помощи такого детонатора можно инициировать практически любое бризантное взрывчатое вещество и вызвать полноценный взрыв.

В 1867 году появляется первая взрывчатка, пригодная для безопасного хранения и транспортировки, — динамит. Девять лет потребовалось Нобелю на то, чтобы довести технологию производства динамита до совершенства — в 1876 году был запатентован раствор нитроцеллюлозы в нитроглицерине (или «гремучий студень»), который до сегодняшнего дня считается одним из самых мощных взрывчатых веществ бризантного действия. Именно из этого состава готовился знаменитый динамит Нобеля.

Выдающийся химик и инженер Альфред Нобель, фактически изменивший лицо мира и давший реальный толчок развитию современной военной и, косвенно, космической технике скончался в 1896 году, прожив 63 года. Имея слабое здоровье, он так увлекался работой, что часто забывал поесть. На каждом из его заводов строилась лаборатория, чтобы неожиданно приехавший хозяин мог продолжить эксперименты без малейшей задержки. Он был и генеральным директором своих заводов, и главным бухгалтером, и главным инженером и технологом, и секретарем. Жажда познания была основной чертой его характера: «Вещи, над которыми я работаю, действительно чудовищны, но они так интересны, так совершенны технически, что становятся привлекательными вдвойне».

Меры предупреждения

Основные правила, регламентирующие обязательные меры по предупреждению пожаров и взрывов, устанавливаются на государственном уровне и утверждаются различными постановлениями или решениями.

Противопожарная безопасность на взрывопожароопасных объектах разрабатывается как в виде профилактического комплекса мер и порядка, так и в виде правил активных мер по ликвидации пожаров или других аварийных ситуаций.

Меры предупреждения заключаются в создании условий и разработке мероприятий по предупреждению взрывов и пожаров, а сама профилактика достигается нижеперечисленными методами и способами:

  • разработка и утверждение индивидуальных для каждого промышленного объекта описываемой категории пожарных правил и норм. Кроме того, немаловажным условием является особый контроль за выполнением этих предупредительных мер;
  • осуществление проектирования и закладки конструкционных особенностей в новосозданные промышленные объекты с учетом требований противопожарной безопасности;
  • тщательный уход, своевременной обслуживание и периодическая проверка технического состояния противопожарных средств. В качестве необходимых и обязательных мероприятий в этом случае стоит выделить плановые периодические осмотры и обследования ответственными лицами с участием представителей государственных органов противопожарной безопасности;
  • проведение социальной пропаганды по привлечению населения к изучению основных правил, требований и норм противопожарной безопасности.

Профилактические меры на промышленных объектах повышенной опасности проводятся на основе специальных норм.

Такие объекты должны возводится с учетом специальных технических требований, при строительстве должны использоваться специальные материалы, а само сооружение относится к определенному классу пожарной безопасности (соответствовать конкретной степени огнестойкости).

В том случае, когда взрывопожароопасные комплексы состоят из нескольких объектов, то между ними должны предусматриваться специальные противопожарные разрывы между строениями или объектами. Кроме того, проводится специальное зонирование территории для более детального распределения уровня пожарной безопасности.

Взрывопожароопасные объекты должны быть оборудованы внутренним пожарным водоводом повышенной производительности, пожарной сигнализацией с центральным пультом оповещения и контроля.

На объектах, где осуществляется хранение легковоспламеняющихся и других горючих веществ, необходимы специальные простенки, а их размещение должно быть раздельным.

Нормами и правилами запрещается монтаж и установка устройств печного или газового отопления, а нарушение этого требования чревато серьезными штрафными санкциями со стороны контролирующих органов, а также полной остановкой производственного процесса.

По последним данным, после взрыва в Бейруте погибло около человек. Но это, к сожалению, далеко не самая страшная техногенная катастрофа.

Взрывы фейерверков в Тультепеке. Декабрь 2016 года

Фото ТАСС / AP / Christian Palma

Сразу целая серия взрывов произошла в мексиканском городке Тультепек. Они раздались на местном рынке, где торговали фейерверками. Точная причина произошедшего неизвестна до сих пор. Погибло тогда 36 человек, ещё около 100 ранены.

Взрывы в Тяньцзине. Август 2015 года

Фото ТАСС / Zuma / Stringer

Техногенная катастрофа произошла на севере Китая в морском порту. На складах фирмы, которая занималась транспортировкой опасных химвеществ, произошёл пожар. Из-за жары и палящего солнца самовоспламенился один из контейнеров, а затем произошло два взрыва, эквивалентных трём и двадцати одной тонне в тротиловом эквиваленте. В результате погибло 173 человека.

Взрыв на заводе AZF в Тулузе. 21 сентября 2001 года

Фото Getty Images

На химическом заводе взорвался ангар с 300 тоннами нитрата аммония, в результате чего погибло около 30 человек, тысячи человек пострадали, тысячи зданий и сооружений города были повреждены.

Железнодорожная катастрофа под Уфой. 4 июня 1989 года

Фото ТАСС / Клипиницер Борис

Крупнейшая за всю историю России и СССР катастрофа на железной дороге произошла из-за взрыва на проходившем рядом трубопроводе Сибирь — Урал — Поволжье. Он произошёл в момент встречного прохождения двух пассажирских поездов. Погибло 645 человек, ранено более 600.

Взрывы и пожар на заводе компании PEPCON в Неваде. 4 мая 1988 года

Фото Wikipedia

На заводе в США, который производил перхлорат аммония, начался пожар. Последующие взрывы привели к гибели двух и ранениям 372 человек, при этом был нанесён ущерб приблизительно на 100 миллионов долларов. Территория в радиусе 16 км от завода была подвергнута действию взрыва (выбито 10 тыс. окон). Мощность взрывов составила 250 тонн в тротиловом эквиваленте.

Авария на Чернобыльской АЭС. 26 апреля 1986 года

Фото ТАСС / Зуфаров Валерий

Разрушение реактора четвёртого энергоблока Чернобыльской атомной электростанции, расположенной близ города Припять. Разрушение носило взрывной характер, сам реактор был полностью разрушен, а в окружающую среду выброшено большое количество радиоактивных веществ. По приблизительным оценкам, жертвами взрыва и последующего облучения стали около 4000 человек.

Бхопальская катастрофа. 3 декабря 1984 года

Фото Wikipedia

Крупнейшая за всю историю техногенная катастрофа. Её называют индийским Чернобылем. В результате аварии на химическом заводе, принадлежащем американской корпорации, погибло около 18 тысяч человек, из которых 3 тысячи погибли непосредственно в день аварии, а 15 тысяч — в последующие годы.

Бхопал — индийский Чернобыль. 35 лет самой страшной катастрофе в истории

Не так давно во всём мире прогремел сериал «Чернобыль». Однако сегодня — годовщина катастрофы, куда более жуткой и куда менее известной. То, что произошло ночью третьего декабря 1984 года в индийском городе Бхопале, можно сравнить разве что с самым страшным фильмом ужасов. Человеческая жадность, наплевательство и безнаказанность стали причиной гибели тысяч невинных людей.

Бомбёжка Хиросимы и Нагасаки. 6 и 9 августа 1945 года

Фото Википедия

Но если все предыдущие взрывы — результат случайности или халатности, то в этом случае — преднамеренное испепеление. Две ядерные бомбы, сброшенные армией США на японские города в самом конце войны, унесли, по разным оценкам, жизни 150–250 тысяч человек.

  • 10 сентября, 11:07

  • 4 сентября, 12:51

Алексей Соков

Общая характеристика

Вскрытие входной двери с помощью компактного подрывного заряда (2008 год)

Любое взрывчатое вещество обладает следующими характеристиками:

  • способность к экзотермическим химическим превращениям
  • способность к самораспространяющемуся химическому превращению

Важнейшими характеристиками взрывчатых веществ являются:

  • скорость взрывчатого превращения (скорость детонации или скорость горения),
  • давление детонации,
  • теплота (удельная теплота) взрыва,
  • состав и объём газовых продуктов взрывчатого превращения,
  • максимальная температура продуктов взрыва (температура взрыва),
  • чувствительность к внешним воздействиям,
  • критический диаметр детонации,
  • критическая плотность детонации.

При детонации разложение взрывчатых веществ происходит настолько быстро (за время от 10−6 до 10−2сек), что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают два основных вида действия взрывчатых веществ: бризантное (местного действия) и фугасное (общего действия).

Существенное значение при хранении взрывчатых веществ и обращении с ними имеет их стабильность.

В прикладных сферах широко используется не более двух-трёх десятков взрывчатых веществ и их смесей. Основные характеристики наиболее распространённых из них сведены в следующую таблицу (данные приведены при плотности заряда 1600 кг/м3):

Взрывчатое вещество Кислородный баланс,% Теплота взрыва, МДж/кг Объём продуктов взрыва, м3/кг Скорость детонации, км/с
Тротил -74,0 4,2 0,75 7,0
Тетрил -47,4 4,6 0,74 7,6
Гексоген -21,6 5,4 0,89 8,1
Тэн -10,1 5,9 0,79 7,8
Нитроглицерин +3,5 6,3 0,69 7,7
Аммонит № 6 4,2 0,89 5,0
Нитрат аммония +20,0 1,6 0,98 ≈1,5
Азид свинца неприменимо 1,7 0,23 5,3
Баллиститный порох -45 3,56 0,97 7,0

Типы взрывчатых веществ

Особенности чувствительности к внешним воздействиям и показатели взрывной мощности позволяют разделить взрывчатые вещества на 3 основные группы: метательные, инициирующие и бризантные. К метательным относят различные виды пороха. В эту группу входят маломощные взрывные смеси для петард и фейерверков. В военном деле их используют для изготовления осветительных и сигнальных ракет, в качестве источника энергии для патронов и снарядов.

Особенностью инициирующих взрывчатых веществ является чувствительность к внешним факторам. При этом у них невысокая взрывная мощность и тепловыделение. Поэтому их используют в качестве детонатора для бризантных и метательных взрывчаток. Для исключения самоподрыва их тщательно упаковывают.

Как детонирует взрывчатое вещество

Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector