Тахометр или спидометр: поток мыслей про измерение частоты в arduino

Программа

Программа на C++ с подробными комментариями приведена в таблице 1. Действие программы основано на измерении периода импульсов, поступающих с датчиков, и последующего расчета скорости и частоты вращения коленвала.

Таблица 1. Исходный код программы.

Для работы используется функция pulseln , которая измеряет в микросекундах длительность положительного либо отрицательного перепада входного импульса. Так что, для того чтобы узнать период нужно сложить длительность положительного и отрицательного полупериодов.

Далее, скорость движения (при датчике на 6000 импульсов на км) вычисляется по формуле:

F = 0,6/Т

где Т — период в секундах, a F — скорость в км/час. Поскольку период измерен в микросекундах фактически формула:

F= 600000/Т

Если датчик на 2500 импульсов на км (японский), то формула будет такой:

F= 1,44/Т

Соответственно, учитывая, что период измерен в микросекундах:

F= 1440000/Т

Под другой датчик нужно будет рассчитать другое число, которое делится на период, и подставить его в программу вместо «600000».

Для измерения частоты вращения коленчатого вала используется формула:

F=30/T

где Т — период в секундах, a F — частота вращения коленвала в оборотах в минуту. Поскольку период измерен в микросекундах фактически формула такая:

F= 30000000/Т

Затем, результаты выводятся в соответствующие строки ЖК-дисплея. Единицы измерения указаны как «km/h» и «оЬ/тіп» (если не нравится, можете изменить).

Если входного сигнала нет, например, включили зажигание, но двигатель не завели, не поехали, то в строках, где нет сигнала, будет надпись «inf».

В принципе, налаживания не требуется. Однако, если неизвестно сколько импульсов на километр дает датчик скорости конкретного автомобиля, это нужно предварительно выяснить.

Либо заниматься экспериментальным подгоном числа, которое делится на период, сверяясь со стрелочным спидометром, что весьма хлопотно, или невозможно, если штатный спидометр неисправный (что и могло стать причиной изготовления данного прибора).

Но лучше все же узнать параметры датчика скорости. А потом рассчитать число, которое в программе делится на период. Обозначим это число X, а количество импульсов на километр N. Тогда X можно рассчитать по такой формуле:

X = 3600000000 / N

Например, если датчик дает, допустим, 2500 импульсов на километр:

Х= 3600000000 / 2500 = 1440000

Или, если датчик дает 6000 импульсов на километр:

Х= 3600000000 / 6000 = 600000

Механическая модификация

Механический автомобильный тахометр, своими руками сделанный, не требует питания и управляющих схем. На валу жестко фиксируется магнит постоянного типа. При его вращении создается вихревое поле, которое увлекает за собой специальную емкость из магнитного материала. Вращению чащи создает сопротивление спиральная пружина. Чем больше скорость вращения, тем активнее отклоняется вал, оснащенный стрелкой.

Основное преимущество механического приспособления – это простота конструкции и отсутствие необходимости в получении электрического питания. Среди минусов можно отметить высокую погрешность и смещенный нижний предел измерений. Стоит отметить, что при малых оборотах стрелка не отклоняется.

Что такое эффект Холла

Эффект Холла можно рассмотреть с точки зрения движения зарядов (заряженных частиц) в магнитном поле. Чтобы понять на практике как это происходит подсоединим батарею к проводнику как показано на рисунке ниже. Электрический ток (i) в этом случае начнет протекать по проводнику от положительного контакта батареи к ее отрицательному контакту.

Но поток электронов (e-) в этом случае будет направлен в противоположном направлении, то есть от отрицательного контакта батареи к ее положительному контакту. В этот момент времени если мы измерим напряжение (разность потенциалов) на концах проводника (поперек его) как показано на рисунке ниже, то оно будет равно нулю.

Теперь создадим магнитное поле над проводником как показано на следующем рисунке.

И если в этот момент времени мы измерим напряжение на концах проводника (поперечных прохождению тока), то оно будет отлично от нуля. Это напряжение и называется «напряжением Холла», а само это явление называется «эффектом Холла».

Работа схемы

Схема тахометра на основе платы Arduino представлена на следующем рисунке.

Схема содержит плату Arduino Pro Mini, модуль инфракрасного датчика и ЖК дисплей. Плата Arduino управляет всем процессом функционирования устройства: считывание импульса с выхода модуля инфракрасного датчика, вычисление частоты вращения (в оборотах в минуту) и передача значения этой частоты на ЖК дисплей. Инфракрасный датчик используется для обнаружения объекта. Мы можем регулировать чувствительность данного датчика с помощью встроенного в него потенциометра. Модуль инфракрасного датчика состоит из инфракрасного передатчика и фотодиода, который обнаруживает инфракрасные лучи. Инфракрасный передатчик излучает инфракрасные лучи, когда эти лучи падают на поверхность, они отражаются от нее и улавливаются фотодиодом (более подробно об этих процессах можно прочитать в статье про робота, движущегося вдоль линии). Выход фотодиода подключен к компаратору, который сравнивает значение с выхода фотодиода с опорным напряжением и результат сравнения выдает на плату Arduino.

Выход модуля инфракрасного датчика напрямую подключен ко контакту 18 (A4) Arduino. Vcc и GND подсоединены к контактам Vcc и GND arduino. ЖК дсиплей подключен к плате Arduino в 4-битном режиме. Его управляющие контакты RS, RW и En напрямую подсоединены к контактам 2, GND и 3 Arduino. Контакты данных D4-D7 подключены к контактам 4, 5, 6 и 7 Arduino. В схеме также присутствует кнопка, которую необходимо нажать для подсчета числа оборотов. Наш тахометр на основе платы Arduino подсчитывает число оборотов в течение 5 секунд а потом по вышеприведенной формуле осуществляет пересчет этого значения в число оборотов в минуту. Кнопка подключена к контакту 10 Arduino.

Основные разновидности тахометров

Предлагаем в зависимости от способа измерения купить бесконтактный, контактный тахометр для автомобиля.

С учетом вида отображения прибор может быть цифровым и аналоговым. В зависимости от использования – переносным и стационарным. Учитывая принцип функционирования устройства, мы предлагаем:

  • купить стрелочные тахометры;
  • подобрать приборы магнитного типа;
  • заказать электрический тахометр.

Опытные менеджеры компании готовы помочь с выбором оптимальной модели прибора.

Заказать тахометр недорого

Чтобы подобрать необходимую модель, воспользуйтесь умным поиском на сайте или запросите консультацию специалиста. Мы подберем тахометры и любые другие датчики под ваши задачи, модификацию автомобиля и бюджет. Свяжитесь с нами удобным вам способом или заполните корзину самостоятельно. Работаем с любыми регионами РФ, принимаем различные виды оплаты. Доставка запчастей возможна из наличия и под заказ.

 Так же для тюнинга автомобиля покупают

маслоуловители картерных газов

Измерение частоты вращения

Механический самодельный тахометр из моторчика Цифровой тахометр из смартфона своими руками

Механический самодельный тахометр из моторчика

Проградуировать такой тахометр можно по-разному. Например, построить справочный график зависимости напряжения от частоты вращения якоря или сделать новую шкалу вольтметра, на которой вместо воль записывается число оборотов.


Зависимость напряжения на контактах моторчика от частоты вращения

Так как график отражает линейную зависимость, достаточно отметить две-три точки и провести через них прямую. Получение контрольных точек — это самый проблемный этап подготовки самодельного тахометра к работе. Если есть доступ к фирменным станкам, контрольные точки легко получить, зажав резиновую трубочку, надетую на вал моторчика, в патроне сверлильного или токарного станка и включая станок на различных передачах, фиксировать показания вольтметра (скорость вращения шпинделя на каждой передаче указана в паспорте станка). В противном случае для калибровки придется использовать либо дрель, либо двигатель при режиме работы для которого известна частота вращения. И даже если удалось измерить напряжение на контактах моторчика только для одной частоты вращения, вторая точка — это пересечение осей (x) и (y) (то есть числа оборотов и напряжения), правда точность измерений по зависимости основанной на двух точках будет низкой.

Для измерения частоты вращения, вал исследуемого двигателя соединяется с моторчиком небольшим отрезком резиновой трубки или с помощью различных переходников. Если вольтметр зашкаливает при измерении больших скоростей вращения, в схему вводится переключатель с дополнительными резисторами. Потребуется и перестроение графика для каждого положения переключателя.


Насадки для соединения моторчика с исследуемым объектом

Схема многодиапазонного тахометра

Возможности прибора можно значительно расширить. Если изготовить роликовый фрикционный переходник диаметром 31,8 мм, тахометр позволит измерять и линейную скорость, выраженную в метрах в минуту. Для этого количество оборотов в минуту, определенное по графику, делят на 10.

Точность измерения зависит практически только от тщательности построения графика и цены деления вольтметра. Подобный простейший и очень дешевый самодельный тахометр может найти широкое применение всюду, где нужно быстро определить частоту или скорость вращения валов, шкивов и других деталей.

Цифровой тахометр из смартфона своими руками

Если Вы являетесь обладателем iPhone, то очень советую установить лучшее приложение для измерения оборотов показанное ниже. И не останавливайтесь на стробоскопе из вспышки телефона, это всего лишь поможет понять как работает стробоскоп-тахометр. Сделав своими руками очень простые электронные схемы, Вы получите стробоскопический и лазерный тахометры не уступающие (а в некоторых ситуациях превосходящие) фирменным тахометрам. Схемы, фото и описание тахометров найдете в этом приложении. Видео с демонстрацией этого приложения смотрите ниже. Самодельный стробоскопический тахометр из iPhone своими руками

Сравнительные измерения частоты вращения двигателя лазерным и стробоскопическим тахометрами

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.Литература

Устройство и принцип работы тахометра

Устройство тахометров разного строения рассмотрено в таблице «Как устроен тахометр разного типа». Если таблица видна не полностью, то сдвиньте её влево.

Вид Конструкция
Механический Основной частью является тросик, используя который, прибор подсоединяется к коленчатому валу двигателя. Другая сторона компонента цепи располагается за шкалой прибора. В процессе вращения центральный шкив оборачивается внутри кожуха, а крутящий момент передаётся на шестерёнки, провоцирующие движение стрелки.
Аналоговый Визуальных различий между механическими и аналоговыми устройствами нет. Внешне эти приборы выглядят одинаково, но устройство второго – сложнее и это позволяет повысить точность. Сам прибор состоит из 4 узлов: датчик, магнитная катушка, стрелка, шкала.
Цифровой Электронный – точный при сравнении с другими вариантами. Он состоит из оптрона, процессора, датчика и цифрового дисплея.

Работоспособность приборов обеспечивается по такой схеме:

  1. После активации системы зажигания обеспечивается пуск мотора. Топливная смесь воспламеняется в камере, что провоцирует движение шатуна.
  2. Компонент цепи запускает вращение коленчатого вала двигателя.
  3. Датчик тахометра находится в нужной позиции, на одном из участков цепей.
  4. Механизм самостоятельно считывает число вращений, создаёт импульсы и передаёт их на панель управления прибором. Там этот сигнал двигает привод стрелки.
  5. Стрелка двигается по шкале с нужным сопротивлением и отображает числовое значение.

Как работает тахометр

Точность устройств различная и зависит от вида используемых датчиков. Визуально все они схожи, основные отличия состоят в способе подключения и обработки данных.

Видео: Как работает тахометр

В этом видеоролике эксперт рассказывает про ринцип работы тахометра, почему он в некоторых случаях может работать без напряжения в бортовой сети, и в каких случаях он этого делать не может.

Компоненты

Для сборки понадобятся:

  • плата Arduino Uno. Ключевой управляющий и логический элемент, принимающий сообщения о прерывании светового луча и делающий вывод о нахождении на участке «приемник-передатчик» вращающегося объекта. Импульсные команды и встроенный таймер позволят системе вычислить обороты вентилятора;
  • макетная плата;
  • ЖК-экран 16×2. Служит для понятного отображения счетчика RPM;
  • резистор подстроечный на 5 кОм. С его помощью регулируется контрастность упомянутого выше дисплея. Резистор позволяет менять напряжение от 0 до +5 вольт и настраивать удобный контраст экрана;
  • SIP-разъемы;
  • перемычки;
  • транзисторы — 2 штуки (2N3904 и 2N3906). Они преобразуют уровень сигнала с фототранзистора до «понятного» плате Ардуино уровня 0 или 5 В;
  • фототранзистор — 1 шт. При падении на этот модуль сильного света транзистор перекрывается. Пока ИК-диод горит, фотодатчик остается «открытым», но при перекрытии он, разумеется, перейдет в закрытое состояние;
  • ИК-светодиод — 1 шт. Основная часть передающего модуля;
  • резисторы на 10 Ом, 100 и 15–16 кОм — по одной штуке;
  • небольшой пятивольтовый ПК-вентилятор.

Для связи будет служить подсоединенный через низкоомный резистор ИК-светодиод: так луч выйдет ярче. Сигнал с диода пойдет на фототранзистор, «закрывающийся» при отключении светового потока. В качестве подконтрольного объекта используется компьютерный вентилятор, частоту вращения которого и станет считать прибор. Он будет висеть между передатчиком и приемником.

Подключенный по транзисторной схеме ИК-приемник создает прерывания и отправляет их на контроллер Ардуино. Плата обрабатывает их через процедуры из программной библиотеки для работы с дисплеями Arduino LCD и выводит данные на экран.

Принципиальная схема будущего устройства:

Особенности схемы тахометра

Приведенная раскладка имеет некоторые нюансы:

  • на интерфейсе ЖК-дисплея к экрану подключены 4 контакта передачи данных и 2 управляющих;
  • сигнал перекрытия инфракрасного луча поступает на цифровой вход 2 контроллера Arduino. По этому прерыванию плата зафиксирует импульс и увеличит внутренний счетчик тахометра.

Принципиальная схема

Прибор может работать только в автомобиле с инжекторным двигателем (в карбюраторных датчика скорости нет, а датчик зажигания есть далеко не во всех). Схема прибора показана на рисунке 1. На этом рисунке плата ARDUINO UNO показана схематично как «вид сверху».

Рис. 1. Принципиальная схема спидометра и тахометра на базе Arduino.

Для согласования портов с датчиками используются каскады на транзисторах VT1 и VT2. Так как питание поступает на прибор с выхода замка зажигания он работает только при включенном зажигании. Датчик скорости, равно как и датчик зажигания автомобиля представляют собой источники импульсов, частота которых зависит от вращения механических деталей автомобиля.

Датчик зажигания автомобиля с четырехцилиндровым бензиновым двигателем формирует два импульса за один оборот коленчатого вала. Если у двигателя не четыре цилиндра частота следования импульсов будет иной.

Датчики скорости бывают разные, но в большинстве своем, что особенно касается отечественных автомобилей, они дают 6000 импульсов за один километр пробега. Хотя, бывают, и такие что дают 2500 импульсов на километр, возможно, есть и другие.

Диагностика

Сделанный своими руками тахометр также может выйти из строя. Для выявления причины неполадки потребуется провести диагностику. В транспортных средствах, оборудованных интерфейсом OBD II, проверка производится с использованием сканера. Кроме того, электронное приспособление можно проконтролировать при помощи любого генератора импульсов. Оптимальным вариантом станет заведомо исправный прибор, осциллограф либо частотомер.

Механический аналог диагностируют посредством дрели или шуруповерта. При наличии регулятора оборотов проверку провести проще. Хвостовая часть троса фиксируется в патроне, а корпус устройства жестко закрепляется.

Общие принципы работы проектируемого тахометра

В этом проекте мы будем создавать цифровой тахометр на основе платы Arduino и модуля инфракрасного датчика для обнаружения вращения и подсчета числа оборотов любого вращающегося объекта. Принцип его действия основан на том, что инфракрасный передатчик излучает инфракрасные лучи которые затем отражаются обратно к инфракрасному приемнику и затем инфракрасный модуль генерирует импульс на своем выходе который обнаруживается контроллером Arduino когда мы нажимаем кнопку start. Он осуществляет счет в течение 5 секунд.

После этих 5 секунд плата Arduino рассчитывает число оборотов в минуту по следующей формуле:

RPM= Count x 12 для одиночного вращающегося объекта.

Но поскольку в этом проекте для демонстрации работы схемы мы используем потолочный вентилятор, то мы должны внести некоторые изменения в приведенную формулу:

RPM=count x 12 / objectsгдеobjects – число лопастей в вентиляторе.

Обобщенная структурная схема работы устройства представлена на следующем рисунке.

Технические характеристики модуля KY-003.

Магнитный датчик Холла KY-003 состоит из чувствительного элемента эффекта Холла 3144EUA-S, резистора 680 Ом и светодиода. Совместим с популярными электронными платформами, такими как Arduino и ESP32.

  • Рабочее напряжение: от 4,5 В. до 24 В.
  • Диапазон рабочих температур от -40 ° C. до 85 ° C.
  • Размеры 18,5 x 15 мм.

Внимание! Не перепутайте модуль KY-003 с аналоговым датчиком Холла KY-035. Модули выглядят одинаково, только на модуле KY-003 распаяны светодиод и резистор, а на модуле KY-035 их нет

Схема подключения к Arduino NANO KY-003.

Подключите линию питания (посередине) к +5 Arduino, землю (-) и GND, соответственно. Подключите сигнальный контакт (S) к контакту 3 на Arduino. Подключение датчика Холла KY-003:

  • S — цифровой выход
  • “средний контакт” —“+” 5 В (можно подключить к “+5 В” на плате Arduino)
  • “-” — общий

Пример кода (скетч) для “KY-003” и Arduino.

// KY-003 цифровой магнитный датчик Холла (Hall)
// https://arduino-tex.ru/
 
int led = 13 ; // назначение пина светодиода
int hallPin = 3 ; // назначение пина датчика
int value ; // переменная для хранения значения с датчика
 
void setup ()
{
  pinMode (led, OUTPUT);   
  pinMode (hallPin, INPUT); 
  //Serial.begin (9600);             // Задаем скорость передачи данных
}
 
void loop ()
{
  value = digitalRead (hallPin) ; // чтение значения с датчика
  if (value == LOW) // когда имеется магнитное поле светодиод горит 
  {
    digitalWrite (led, HIGH);
  }
  {
    digitalWrite (led, LOW);
  }
}

В коде KY-003 для Arduino. При обнаружении магнитного поля загорается встроенный в плату Arduino светодиод, который подключен к 13 пину. Также светодиод на самом модуле загорается при обнаружении магнитного поля. Если магнитного поля нет, то светодиод на модуле не горит.

Применение KY-003цифрового датчика Холла.

Цифровой датчик холла KY-003 можно использовать в охранных системах, системах сигнализации и контроля процесса. Также можно применять модуль KY-003, когда нужен бесконтактный датчик. Например, в случае если у нас есть герметичный резервуар (не металлический и с относительно не толстыми стенками) и нам нужно определить приближение элемента к стенке, или перемещение элемента вдоль стенки, например, поплавка в жидкости. Так как проложить в резервуаре провода мы не можем, а закрепить магнит на подвижном элементе можно. При приближении магнита к стенке, датчик холла, установленный с противоположной стороны, позволяет определить приближение. Таким способом мы получаем бесконтактный датчик.

Описание всех датчиков из набора «37 in 1 Sensors Kit for Arduino» вы можете посмотреть на странице описания данного набора модулей для Arduino.

Понравился Урок KY-003цифровой датчик Холла. Подключение к Arduino? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу , в группу на .

Спасибо за внимание!

Технологии начинаются с простого

Фотографии к статье

Файлы для скачивания

Скачивая материал, я соглашаюсь с
Правилами скачивания и использования материалов.

кода (скетч) для KY-003 Arduino.ino 1 Kb 51 Скачать

Настройка карбюратора автомобиля

Теперь несколько слов о настройке карбюратора автомобиля «ВАЗ» с использованием данного прибора, на примере «ВАЗ-2108».

Настройка карбюратора на холостой ход

Необходимо установить номинальную частоту вращения коленвала на холостом ходу при допустимом содержании СО в выхлопе не более 2%.

Очень медленно вращаете винт качества смеси в ту и другую сторону, пока не найдете положение, при котором показания прибора максимальны. Затем винтом количества устанавливаете показания прибора 900-950тV, и снова немного подстраиваете винт качества, чтобы эти показания были максимальными.

Теперь нужно дать двигателю поработать некоторое время (1-2 минуты). Затем, запомните показания прибора (допустим было 928mV), и очень медленно завинчивайте винт качества до тех пор, пока показания прибора не уменьшатся на 100mV (в нашем случае, до 828mV).

Дайте двигателю поработать около минуты, и винтом количества установите номинальную частоту вращения, согласно требованию для данной модели автомобиля (например, 850 об/мин для ВАЗ-2108). При такой регулировке содержание СО (если двигатель исправен) будет в пределах 1,5-2%.

Регулировка пускового механизма

На прогретом двигателе вытяните ручку подсоса и тонкой отверткой откройте воздушную заслонку, так чтобы она была открыта примерно, на две трети. При этом частота вращения коленвала должна быть около 2800-3000 об/мин.

Запомните эту величину (например, получилось 2930). Далее, уберите отвертку от воздушной заслонки и винтом регулировки пускового зазора воздушной заслонки добейтесь того, чтобы показания прибора были на 200 об/мин меньше установленных ранее (в нашем случае, было 2930, значит теперь должно быть 2730).

READ Как подключить компьютер к телевизору через роутер lg smart tv

На этом регулировку карбюратора на холостой ход и регулировку пускового механизма можно считать завершенной.

Источник

Триггер Шмитта

Мы знаем, что не все тестовые сигналы являются прямоугольными. У нас есть сигналы треугольные, пилообразные, синусоидальные и так далее. Поскольку Arduino Uno может детектировать только прямоугольные сигналы, нам необходимо устройство, которое могло бы преобразовывать любые сигналы в прямоугольные. Поэтому мы используем триггер Шмитта. Триггер Шмитта представляет собой цифровой логический элемент, предназначенный для арифметических и логических операций.

Этот элемент обеспечивает выходной сигнал (OUTPUT) на основе уровня напряжения входного сигнала (INPUT). Триггер Шмитта имеет пороговый уровень напряжения (THERSHOLD): когда уровень входного сигнала выше порогового уровня элемента, уровень сигнала на выходе будет равен высокому логическому уровню. Если уровень входного сигнала ниже порога, на выходе будет низкий логический уровень. Обычно у нас нет отдельного триггера Шмитта, за ним всегда следует элемент НЕ.

Мы собираемся использовать микросхему 74LS14, которая содержит 6 триггеров Шмитта. Эти шесть элементов внутри подключены, как показано на рисунке ниже.

Микросхема 74LS14, содержащая шесть триггеров Шмитта. Распиновка

Таблица истинности инвертированного триггера Шмитта показана ниже, в соответствии с ней мы должны запрограммировать Arduino Uno для инвертирования положительных и отрицательных периодов времени на ее выводах.

\(Y = \bar{A}\)

Таблица истинности
Вход Выход
A Y
L H
H L
  • H – высокий логический уровень;
  • L – низкий логический уровень.

Теперь, когда мы подадим сигнал любого типа на элемент триггера Шмитта, у нас на выходе будет прямоугольный сигнал с инвертированными временными периодами, и этот сигнал мы подадим на Arduino Uno.

Схема электронного тахометра на Arduino

Для сборки прибора понадобится, естественно, микроконтроллер Arduino. Если его нет, то сойдет любой другой контроллер с похожими характеристиками, но тогда нужно будет дополнительно собирать программатор. Также для этой схемы нужны резисторы 33 кОм, 270 Ом, 10 кОм в виде потенциометра. Еще можно приобрести синий светодиод, инфракрасный светодиод и фотодиод. Далее найдите ДСВ-дисплей и микросхему регистра сдвига с маркировкой 74НС595. Здесь используется оптический датчик и принцип отражения лучей. С этой системой вам не придется беспокоиться о том, какая должна быть толщина ротора, а количество его лопастей не сможет изменить показатели. Датчик сможет точно считывать обороты.

Как самому сделать тахометр

Полезные советы. Тахометр можно собрать своими руками из остатков электроники. Простой светодиодный тахометр для автомобиля Мастер Винтик. Тахометр-2 или Тахометр своими руками — Автоэлектроника — Архив схем Тахометр для toyota своими руками. Блог, факты, фотографии.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:

Измерение частоты вращения

Начнем с определений. Что такое тахометр в автомобиле? Это прибор, фиксирующий частоту вращения коленчатого вала в автомобиле. Разумеется, его применение не ограничено только автотранспортом.

Определение количества оборотов в минуту необходимо при работе с различными механизмами:. Кроме того, приборы для измерения частоты вращения применяются в научно-исследовательской работе. Любой тахометр состоит из двух частей:. На вал, частота которого измеряется, устанавливается метка, излучающая любое поле. Чаще всего это маленький магнит.

Рядом с валом размещается считывающее устройство — датчик. На нем формируются импульсы, соответствующие скорости вращения вала. Электронная схема принимает сигналы, и выводит их на устройство отображения. Вместо пары магнит-датчик иногда применяется фото и светодиод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector