Что такое группы соединения у трансформатора?
Содержание:
- Измерение сопротивления изоляции у трансформатора
- Конструкция и устройство трансформатора тока
- Падения напряжения и сопротивления обмоток трансформатора
- Как подобрать подходящий трансформатор
- Дополнительные испытания
- Трансформаторы. Режимы работы
- Зачем нужна комплексная диагностика трансформаторов
- Зависимость напряжения от нагрузки.
- Намотка трансформатора своими руками
- Безопасность при измерениях
- СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
- Как проверить трансформатор мультимтером правильно
- Как Проверить Трехфазный Двигатель Мегаомметром
- Определение обмоток и отводов по сопротивлению
- Проверка трансформатора на нагревание
Измерение сопротивления изоляции у трансформатора
Для измерений используется мегаомметр на напряжение 2500 В. Важная особенность: сопротивление изоляции на стороне НН, имеющей глухозаземленную нейтраль, невозможно измерить без отсоединения этой самой нейтрали от контура.
. Если же он невозможен, а при измерениях результаты будут сильно искажены, то при текущем ремонте можно их не производить. Но при капремонте они обязательны, измерения проводятся до и после его выполнения.
При измерениях на двухобмоточных трансформаторах мегаомметр подключается минимально по двум схемам. Сначала один из его выводов подключается к обмотке ВН, при этом обмотка НН соединяется с заземленным баком трансформатора и вторым выводом мегаомметра. Затем обмотки меняются местами: заземляется ВН, выводы от прибора подключаются к НН и баку.
При наличии трех обмоток логика подключения мегаомметра остается той же самой, только соединяется с баком не одна, а две обмотки. Для трансформаторов 16 кВА и выше добавляются еще два измерения: соединенных вместе обмоток ВН и СН относительно обмотки НН, соединенной с баком, а также всех обмоток относительно бака.
Видео об испытаниях высоковольтных трансформаторов:
Допустимые значения измеренных величин, относящиеся ко всем без исключения обмоткам трансформатора, указаны в таблице.
Измеренным значением сопротивления изоляции считается величина, которую показал прибор через 60 секунд после приложения измерительного напряжения (R60). Но при капремонте требуется и измерение коэффициента абсорбции (R60/R15). После ремонта и заливки маслом измеренные величины должны укладываться в нормы, приведенные в следующей таблице.
Конструкция и устройство трансформатора тока
Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.
Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись
При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.
В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.
Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).
Падения напряжения и сопротивления обмоток трансформатора
Относительные активные падения напряжения в первичной и вторичной обмотках однофазного трансформатора при номинальной нагрузке:
В случае трехфазного трансформатора нужно правые части этих формул разделить на √3. Активные сопротивления обмоток однофазного трансформатора:
В случае трехфазного трансформатора нужно правые части этих формул разделить на 3 при соединении обмоток звездой.
Активное сопротивление короткого замыкания двухобмоточного трансформатора, приведенное к первичной обмотке:
где U1 и U2 берутся из задания, I1 и I2 – из позиции 1, W1 и W2 – из позиции 4, Pм и Pм2 – из позиции 7.
Относительные индуктивные падения напряжения в отдельных обмотках двухобмоточного трансформатора:
eS = eS1 + eS2 .
Индуктивное сопротивление короткого замыкания двухобмоточного трансформатора, приведенное к первичной обмотке:
где
U1 и f берутся из задания; I1 и I2 – из позиции 1; E1, W1 и W2 – из позиции 4; δ1, δ2, δ12 и H – из позиции 6, lω1 и lω2 – из позиции 7.
Полное сопротивление короткого замыкания двухобмоточного трансформатора:
Напряжение короткого замыкания двухобмоточного трансформатора:
В случае трехфазного трансформатора нужно правую часть выражения для xк поделить, а для eк – умножить на √3.
Относительное изменение напряжения двухобмоточного трансформатора при нагрузке может быть определено по следующей приближенной формуле:
где cos φ2 берется из задания, cos φ1 – из позиции 1.
Как подобрать подходящий трансформатор
Выбрать подходящий трансформатор можно большим количеством способов, но львиная доля это безысходность или незнание мастера. Выделим три наиболее простых и применимых в практике метода:
- Первый. Взять старый трансформатор, вышедший из строя. Посмотреть маркировку и найти в Интернете аналог. Если вдруг трансформатор требуется для иных целей, придется повозиться.
- Второй способ: практический. Для этого следует замерить напряжение и силу тока в сети, а затем посмотреть требуемые параметры устройства, которое планируется подключать через трансформатор. После этого нужно посчитать коэффициент трансформации и, вооружившись этими знаниями, идти выбирать подходящую модель.
- Третий способ: аналитический. Воспользоваться приведенным в статье расчетом или программным обеспечением, чтобы определить конкретные параметры модели. Если учесть, что в примере используются реальные сердечники и диаметры проводов, то реально найти устройство, которое будет соответствовать заявленным требованиям.
Дополнительные испытания
Испытания с оценкой внешней целостности корпуса трансформатора, анализа трансформаторного масла, вводов, тест встроенных трансформаторов тока силового преобразователя напряжения хоть и носят вспомогательный характер, но должны в обязательном порядке проводится при проведении приемосдаточных работ на объекте.
Кратко о каждом из них рассказывается ниже.
Трансформаторного масла
Масло в системе силового трансформатора напряжения играет роль охлаждающей, изоляционной жидкости в зависимости от типа сборки электроагрегата. К тому же со временем необходимые показатели этого жидкого вещества могут видоизменяться (масло может «стареть»), что негативно может повлиять на правильную работу всего преобразователя напряжения в целом. Поэтому при дополнительных испытаниях трансформаторное масло оценивают по нескольким параметрам:
- Степень возможного окисления масла;
- Критический нагрев до режима воспламенения жидкости;
- Допуски вещества по плотности.
Данные собираются на основе тестов с помощью специальных лабораторных измерителей, которые после испытаний сравнивают с паспортными значениями и в случае серьезных отклонений полученных параметров от заданных, принимают соответствующие меры.
Вводов
Следующим вспомогательным тестом является проверка и осмотр всех контактных вводов силового оборудования на обнаружения явных неисправностей, деформаций или иных дефективных изменений, которых не было на этапе прошлого тестирования.
Ведется обязательная очистка контактных вводов от пыли, грязи и других посторонних веществ, которые могут отрицательно повлиять на работоспособность оборудования.
Встроенных ТТ
Дополнительным обязательным испытанием подвергаются встроенные трансформаторы тока на силовом преобразователе напряжения согласно «ПЭУ» по пунктам. 7.1, 7.3.2, 7.4-7.6. В основу таких тестов входят несколько проверок оборудования:
- Измерение сопротивления изоляции встроенных ТТ – полученное значение сопротивления должно быть не менее 1 Мом;
- Тепловизионный контроль ТТ – тест и оценка проводится согласно нормам, указанным в приложении 3 «ПУЭ»;
- Контроль изоляции под рабочим напряжением.
Все полученные параметры, после проведения их сравнительного анализа с паспортными данным добавляются к основным результатам проверки оборудования занесением в рабочий журнал.
Включение толчком на номинальное напряжение
Перед тестированием трансформатора подобным опытом монтажные, очистные работы с силовым оборудованием должны быть полностью закончены. Первичный анализ и общие мероприятия методики тестов трансформатора должны нести минимум удовлетворительные значения и параметры для проведения включения толчком на номинал напряжения.
Суть вспомогательного испытания состоит в подключении к трансформатору дизель генератора и подача напряжения на него без нагрузки в 3-6 кратной величине толчком в присутствии рабочего персонала, который ведет оценку и анализ всех защит и механизмов силового преобразователя напряжения.
Если срабатывания защит трансформатора на отключение от сети не было, оборудование остается под напряжением на длительный период с дальнейшей его «прослушкой» и анализа работы.
По результатам тестирования полученные данные, выводы о работе силового электрооборудования заносятся в рабочий журнал испытаний.
Трансформаторы. Режимы работы
Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.
Режимы работы трансформатора
Существует пять характерных режимов работы трансформатора:
- Рабочий режим;
- Номинальный режим;
- Оптимальный режим;
- Режим холостого хода;
- Режим короткого замыкания;
Рабочий режим
Режим характеризуется следующими признаками:
- Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot_1 ≈ \dot_\);
- Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot_1 ≤ \dot _1ном\).
В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.
Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.
Номинальный режим работы
Характерные признаки режима:
- Напряжение первичной обмотки равно номинальному \(\dot_1 = \dot_\);
- Ток первичной обмотки равен номинальному \(\dot_1 = \dot _\).
Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.
Оптимальный режим работы
Режим характеризуется условием:
Где \(P_\) — потери холостого хода; \(P_\) — потери короткого замыкания; \(k_\) — коэффициент нагрузки трансформатора, определяемый по формуле:
Где \(P_2\) — ток нагрузки вторичной обмотки; \(P_\) — номинальный ток вторичной обмотки.
В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД (Смотри «Трансформаторы. Оптимальный режим работы»).
Режим холостого хода
Характерные признаки режима:
- Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки (1) трансформатора;
- К первичной обмотке приложено напряжение \(\dot_ = \dot_\);
- Ток вторичной обмотки \(\dot_2 ≈ 0\) (для трехфазного трансформатора — \(\dot _ ≈ \dot_ ≈ 0\).
На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.
Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора
Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора
По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров (смотри «Опыт холостого хода трансформатора»).
ПримечаниеПод сопротивлением номинальной нагрузки обмотки понимается величина \(R_\), равная отношению номинального напряжения обмотки \(U_\) к её номинальному току обмотки \(I_\)
Зачем нужна комплексная диагностика трансформаторов
Чтобы оценить техническое состояние электрооборудования, специалистами инженерного выполняется комплексная диагностика трансформаторов. С ее помощью можно выявить потенциальные угрозы и дефекты, способные привести к аварии на энергообъекте. На основании полученных данных разрабатывается концепцию продления периода эксплуатации оборудования путем замены изношенных рабочих узлов. Комплексное обследование трансформаторов выполняют в следующих случаях:
- назрела необходимость проведения капитального ремонта электрооборудования;
- необходимо составление экспертного технического заключения при аварийной остановке оборудования;
- для технического обоснования выявленных дефектов при проведении разного рода проверок;
- для определения условий и норм функционирования оборудования согласно с Государственным Отраслевым Стандартом 11677.
Своевременное проведение экспертизы силовых трансформаторов снижает риск простоев их по причине аварийных остановок и увеличивает надежность эксплуатации всего энергетического объекта.
Зависимость напряжения от нагрузки.
На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P
иS , причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F, создаваемого первичным током, которая замыкается на одной лишь первичной обмоткеP ; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния. Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величинаV 1 представляет напряжение на зажимах первичной обмотки, аI 1 – ток в ней, запаздывающий по отношению кV 1 наq градусов. НапряжениеI 1R 01 (находящееся в фазе сI 1) и напряжениеI 1X 01 (сдвинутое по отношению кI 1 на 90° и опережающее его) суммируются векторно сV 1, даваяE 1. В результате имеем
Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cosq =
1 и sinq = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением
Для вторичной обмотки имеем R
02 =R 01(N 2 /N 1)2 иX 02 =X 01(N 2 /N 1)2. Записывая аналогично предыдущему уравнение дляЕ 2, получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).
КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь Pc
в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД (h ) можно получить из формулы
Намотка трансформатора своими руками
Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.
На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.
Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.
Читать также: Как снять подшипник с вала болгарки
Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.
Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.
Безопасность при измерениях
Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.
Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.
СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт
Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;
U
_2
– напряжение на выходе трансформатора, нами задано 36 вольт
;
I
_2
– ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1
, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где:S
– площадь в квадратных сантиметрах,P
_1 – мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S
определяется число витков w
на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8
витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,
округляем до 173 витка
.
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,
принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где
: d – диаметр провода
.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.
Площадь поперечного сечения провода диаметром 1,1
мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.
Округлим до 1,0
мм².
Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.
Или два провода: – первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,– второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:– «Как намотать трансформатор на Ш-образном сердечнике».– «Как изготовить каркас для Ш – образного сердечника».
Электрический аппарат – трансформатор используется для преобразования поступающего переменного напряжения в другое – исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.
Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.
Как проверить трансформатор мультимтером правильно
Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах
Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.
Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
А так как мощность – это произведение тока i на напряжение u
S = u∙i,
Откуда получаем простое уравнение:
Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.
Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.
Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.
Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
Как определить обмотки трансформатора
Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.
В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.
Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.
Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.
Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).
Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.
Соединение обмоток трансформатора
Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.
Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.
Как Проверить Трехфазный Двигатель Мегаомметром
Как проверить состояние обмотки двигателя
На первый взгляд, обмотка представляет собой кусок проволоки, намотанной особым образом, и ломать там особо нечего. Но у него есть особенности:
серьезный отбор однородного материала по всей его длине;
точная калибровка формы и сечения;
применение в промышленных условиях слоя лака, обладающего высочайшими изоляционными качествами;
сильные контактные соединения.
Если какое-либо из этих требований нарушается в любой точке провода, то создаются условия для прохождения электронного тока и двигатель начинается с малой мощности или останавливается вообще.
Так проверить одна обмотка трехфазного двигателя должна быть отключена от других цепей. На всех двигателях они могут быть собраны по одной из двух схем:
Концы обмоток обычно выводятся на клеммные колодки и обозначаются знаками «Н» (начало) и «К» (конец). Время от времени отдельные соединения могут быть скрыты внутри корпуса, и для заключений используются другие методы обозначения, такие как числа.
В трехфазном двигателе статора используются обмотки с аналогичными электронными характеристиками, которые имеют одинаковое сопротивление. Если они показывают разные значения при измерении с помощью омметра, это повод серьезно подумать о причинах разброса показаний.
Как возникают неисправности в обмотке
Визуально оценить качество обмоток маловероятно из-за ограниченного доступа к ним. На практике они проверяют свои электронные свойства, считая, что все неисправности обмоток:
разрыв, когда целостность провода нарушается и прохождение через него электронного тока исключается;
небольшая неисправность, возникающая при разрыве изоляционного слоя между входной и выходной катушками, характеризуется исключением обмотки со стороны шунта;
перекрытие при разрыве изоляции между одной или несколькими соседними катушками, которые, таким образом, деактивируются. Смотрите тест мегометра. Как проверить шаговый двигатель a21k-m596 | Ток проходит через обмотку, минуя короткозамкнутые витки, не преодолевая их электронного сопротивления и не создавая для них особой работы;
пробой изоляции между обмоткой и корпусом статора или ротора.
Проверка обмотки на обрывы проводов
Этот тип повреждения определяется путем измерения сопротивления изоляции омметром. Устройство будет демонстрировать огромное сопротивление — який, который учитывает зазор, создаваемый зазором в воздушном пространстве.
Проверка обмотки на короткое замыкание
двигатель, внутри электронной схемы, которая показывает короткое замыкание, она отключена защитой сети. Но даже при быстром выводе из этого метода появление короткого замыкания хорошо видно из-за воздействия высоких температур с сажей или следами синтеза металла.
В электронных методах определения сопротивления обмотки омметра получается очень маленьким значением, очень близким к нулю. Действительно, практически вся длина провода исключается из измерения из-за случайного шунтирования входных концов.
Определение обмоток и отводов по сопротивлению
Визуальный осмотр дает первичную информацию, которую обязательно нужно проверять. Если отводов много, в первую очередь необходимо определять катушки. Для этого мультиметром в режиме омметра попарно прозваниваются все отводы. Если прибор показывает какое-то значение, их можно отнести к одной катушке.
Следующий шаг – определение первичной и вторичной обмотки. Если их две, мультиметр переводится в режим «прозвон», измеряется сопротивление в каждой катушке. У первичной сопротивление выше. Это явление определено особенностями конструкции. Первичная намотка создается из большого количества витков тонкого провода, вторичная – из небольшого количества витков толстого провода.
Если намоток много, их определение занимает некоторое время. Кроме мультиметра требуется бумага и ручка (для записи или зарисовки результатов измерений). Один щуп мультиметра располагается на любой вывод, вторым нужно коснуться любого другого. Если сопротивление есть, вывод из той же катушки.
Если трансформатор предназначен для работы с несколькими напряжениями (110В, 127В, 220В), у первичной обмотки несколько отводов. При выдаче нескольких напряжений на второй катушке тоже несколько отводов.
После того, как определены все отводы для одной катушки, начинается поиск следующей. Один щуп мультиметра прикладывается к другому выводу, вторым проверяется сопротивление в оставшихся. Процесс продолжается, пока выводы сгруппируются по катушкам. Все значения необходимо записать. Исходя из результатов, рисуется схема преобразователя.
После разделения выводов по намоткам необходимо установить, где у каждой из них начало, где конец. Берутся 2 вывода одной намотки, помечаются (условно) как начало и конец. Измерительный прибор регулируется на предел единицы миллиампер и подключается к любой паре из другой намотки. Минус плоской батарейки 4,5 В присоединяется к отводу первой намотки, помеченному как конец. Далее нужно несколько раз плюсом батарейки коснуться условного начала и следить за тестером.
При замыкании цепи между намоткой и батарейкой прибор должен реагировать. Если стрелка отклоняется к минусу, необходимо поменять полярность подключения ко второй намотке и еще раз замкнуть цепь. Теоретически стрелка должна отклониться на плюс. Если это так, то началом намотки является вывод, который соединен с плюсом прибора.
Этот способ можно применить в любой ситуации, когда возникает вопрос, как определить начало или конец обмотки трансформатора.
Проверка трансформатора на нагревание
Превышение температуры обмоток и сердечника трансформатора над температурой окружающей среды приближенно можно определить по формуле:
где Pм – суммарные потери в меди обмоток из позиции 7; Pс – потери в стали сердечника из позиции 8; aо = (10 – 12) × 10-4 – средний коэффициент теплоотдачи открытой поверхности обмоток и сердечника, Вт/см2 × град; Sсер и Sобм – открытые поверхности сердечника и обмоток трансформатора, см2; ΔΘ° — перепады температуры от внутренних слоев обмоток к наружным, который для пропитанных лаком обмоток приближенно может быть принят 10 – 15°С.
1 Для того чтобы не нарушать хронологию изложения материала взятого из источника представленного ниже, в тексте указан, не действующий на сегодняшний день, стандарт ГОСТ 802-58. Его действующим аналогом, является ГОСТ 21427.1-83. Соответственно марки стали Э11, Э41, Э310, Э320, Э34, Э340, Э44, Э47 и Э48 являются устаревшими и не производятся. Выбирая сталь при расчете сердечника пользуйтесь ГОСТ 21427.1-83.