Что такое счетчик гейгера и как сделать его своими руками

КОД

Напишем код для определения количества радиации.

Arduino

#include <SPI.h>

#define LOG_PERIOD 15000 //Период регистрации в миллисекундах, рекомендуемое значение 15000-60000.
#define MAX_PERIOD 60000 //Максимальный период регистрации.

unsigned long counts; //
unsigned long cpm; //
unsigned int multiplier; //
unsigned long previousMillis; //
float uSv; // Переменная для перевода в микроЗиверты
float ratio = 151.0; // Коофициент для перевода импульсов в микроЗиверты
float uP = 0;
const byte interruptPin = D2; // Порт ESP к которому подключен счетчик

void tube_impulse(){ //Функция подсчета имульсов
counts++;
}

void setup(){ //
counts = 0;
cpm = 0;
multiplier = MAX_PERIOD / LOG_PERIOD;
Serial.begin(9600);
interrupts();
pinMode(interruptPin, INPUT);
attachInterrupt(digitalPinToInterrupt(interruptPin), tube_impulse, FALLING); //Определяем количество импульсов через внешнее прерывание на порту

}

void loop(){ //Основной цикл
unsigned long currentMillis = millis();
if(currentMillis — previousMillis > LOG_PERIOD){
previousMillis = currentMillis;
cpm = counts * multiplier;
Serial.println(cpm);
uSv = cpm / ratio ;
Serial.println(uSv);
uP = uSv * 100 ;
Serial.println(uP);
counts = 0;

}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include <SPI.h>
 
#define LOG_PERIOD 15000  //Период регистрации в миллисекундах, рекомендуемое значение 15000-60000.
#define MAX_PERIOD 60000  //Максимальный период регистрации.
 

unsignedlongcounts;//

unsignedlongcpm;//

unsignedintmultiplier;//

unsignedlongpreviousMillis;//

floatuSv;// Переменная для перевода в микроЗиверты

floatratio=151.0;// Коофициент для перевода импульсов в микроЗиверты

floatuP=;

constbyteinterruptPin=D2;// Порт ESP к которому подключен счетчик

voidtube_impulse(){//Функция подсчета имульсов

counts++;

}
 

voidsetup(){//

counts=;

cpm=;

multiplier=MAX_PERIOD/LOG_PERIOD;

Serial.begin(9600);

interrupts();

pinMode(interruptPin,INPUT);

attachInterrupt(digitalPinToInterrupt(interruptPin),tube_impulse,FALLING);//Определяем количество импульсов через внешнее прерывание на порту  

}
 

voidloop(){//Основной цикл

unsignedlongcurrentMillis=millis();

if(currentMillis-previousMillis>LOG_PERIOD){

previousMillis=currentMillis;

cpm=counts*multiplier;

Serial.println(cpm);

uSv=cpm/ratio;

Serial.println(uSv);

uP=uSv*100;

Serial.println(uP);

counts=;

}

}

Расписывать код не вижу смысла. Он неплохо прокомментирован. Основной принцип подсчета сводиться, к подсчету количества импульсов от трубки J350Br, используя прерывание на порту D2. После того как получили количество импульсов, переводим наши «попугаи» в микрозиверты и микрорентгены. Конечно без калибровки наши данные так и останутся «попугаями», поэтому лучше всего найти эталонный источник радиации и попробовать откалибровать наш счетчик.

Допустимые области измерения счетчиков Гейгера

Если счетчик Гейгера откалиброван для измерения мощности дозы радионуклида Cs-137, он будет полезен только при этом виде измерения. Но если пытаться измерить таким прибором, например, излучение кобальта 60 (Co-60), результат будет неточным. Поскольку этот измеритель сможет зафиксировать только половину фактической дозы излучения, в связи с тем,что Co-60 излучает в два раза больше энергии, чем Cs-137. В тех случаях, когда радионуклиды обладают меньшей энергией, детектор, наоборот, покажет более высокую мощность дозы, чем она есть на самом деле.

Для более широкого диапазона измерения уровня радиации применяют счетчики Гейгера с компенсацией энергии. Они позволяют установить точные дозы излучения в широком диапазоне.

Области измерения счетчиков Гейгера в мР/ч или мкР/ч:

  1. Альфа-излучение — заряженные частицы, которые образуются в результате радиоактивного распада ядра. Их проникновение невелико и останавливается простым листом бумаги.
  2. Бета-излучение — это электроны или позитроны, заряженные частицы со средним уровнем проникновения. Их останавливает алюминиевая пластина.
  3. Гамма-излучение — самый опасный вид излучения, их возможно остановить слоем свинца различной толщины.
  4. Можно также при измерении альфа- или бета-излучения определить количество импульсов в минуту (cpm), либо количество импульсов в секунду (cps), в зависимости от типа используемого измерителя.

:: СЧЁТЧИК ГЕЙГЕРА ::

   Изобретенный Гансом Гейгером прибор, способный определить ионизирующее излучение, представляет собой герметизированный баллон с двумя электродами, куда закачивается газовая смесь, состоящая из неона и аргона, которая ионизируется.

На электроды подается высокое напряжение, которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации.

Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды.

В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц.

   Он способен реагировать на ионизирующие излучения самых различных видов. Это альфа-, бета-, гамма-, а также рентгеновское, нейтронное и ультрафиолетовое излучения.

Так, входное окно счетчика Гейгера, способного регистрировать альфа- и мягкое бета-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.

Схема паяется на небольшую печатную плату, и все это помещено в алюминиевый корпус. Медные трубки и кусок алюминиевой фольги используются для фильтрации радиочастотных помех.

Список деталей нужных для радиосхемы

  • 1 BPW34 фотодиода
  • 1 LM358 ОУ
  • 1 транзистор 2N3904
  • 1 транзистор 2N7000
  • 2 конденсатора 100 НФ
  • 1 конденсатор 100 мкФ
  • 1 конденсатор 10 нФ
  • 1 конденсатор 20 нФ
  • 1 10 Мом резистор
  • 2 1.

    5 Мом резистора

  • 1 56 ком резистор
  • 1 150 ком резистор
  • 2 1 ком резистора
  • 1 250 ком потенциометр
  • 1 Пьезодинамик
  • 1 Тумблер включения питания

   Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов.

 После сборки убедитесь, что полярность динамика и светодиода, являются правильными.

   Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать.

   Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности. Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам.

   После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались. Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц.

   Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ по этой теме.

Поделитесь полезными схемами

СЕРДЦЕ НА СВЕТОДИОДАХ

   Сегодня мы попробуем спаять простое эффектное украшение – светодиодное сердце. В схеме не используется дорогих радиодеталей.

ФМ УСИЛИТЕЛЬ

   Делаем качественный полуваттный передатчик с усилителем, для передачи аудиосигнала на FM радиовещательный приёмник.

САМОДЕЛЬНЫЙ MP3 ПЛЕЕР

    Данный MP-3 плеер поддерживает достаточно много функций, например случайное воспроизведение дорожек, навигация по дорожкам (вперед, назад, пауза), регулирование громкости звука воспроизведения. Также тут присутствует поддержка файловой системы FAT32, фрагментированных файлов. Качество звука и воспроизведения музыкальных файлов находится на очень высоком уровне. 

РАБОТА ТРИГГЕРА

     Триггер определяется, как бистабильный элемент, то есть логическое устройство с обработанными связями, которое может находиться в одном из двух устойчивых состояний, обеспечиваемых этими связями.

Входами триггера R, T и S служат кнопки SB1 – SB3, нажатием которых подается напряжение высокого уровня. Индикаторами выходов Q и Q– являются лампы HL1 и HL2. При включении питания триггера загорается одна из ламп, например HL2.

Если теперь на вход R подать 1, нажав кнопку SB1, триггер перейдет в другое устойчивое состояние – загорится лампа HL1, а лампа HL2 погаснет.   

Типы трубки

В целом, существует два основных типа конструкции трубки Гейгера.

Тип конечного окна

Схема счетчика Гейгера с трубкой с «торцевым окном» для излучения с низкой проницаемостью. Громкоговоритель также используется для индикации

Для альфа-частиц, бета-частиц с низкой энергией и рентгеновских лучей с низкой энергией обычная форма представляет собой цилиндрическую трубку с торцевым окном . Этот тип имеет окно на одном конце, покрытое тонким материалом, через которое может легко проходить слабопроникающее излучение. Слюда является широко используемым материалом из-за ее малой массы на единицу площади. На другом конце находится электрическое соединение с анодом.

Блинная трубка

Блинная трубка G – M, хорошо виден круговой концентрический анод.

Блин трубка представляет собой вариант конечного окна трубы, но который предназначен для использования для мониторинга загрязнения бета- и гамма. Он имеет примерно такую ​​же чувствительность к частицам, как и тип оконного окна, но имеет плоскую кольцевую форму, поэтому можно использовать самую большую площадь окна с минимальным газовым пространством. Подобно цилиндрической оконной трубке, слюда является широко используемым оконным материалом из-за ее малой массы на единицу площади. Анод обычно состоит из нескольких проводов в виде концентрических окружностей, поэтому он полностью проходит через газовое пространство.

Безоконный тип

Этот общий тип отличается от типа специального оконечного окна, но имеет два основных подтипа, которые используют различные механизмы взаимодействия излучения для получения подсчета.

С толстыми стенками

Набор толстостенных трубок G – M из нержавеющей стали для гамма-обнаружения. Самый большой имеет кольцо компенсации энергии; другие не компенсируются по энергии

Используемый для обнаружения гамма-излучения с энергиями выше примерно 25 кэВ, этот тип обычно имеет общую толщину стенок из хромистой стали примерно 1-2 мм . Поскольку большинство гамма-фотонов с высокой энергией будут проходить через заполняющий газ с низкой плотностью без взаимодействия, трубка использует взаимодействие фотонов с молекулами материала стенки для образования вторичных электронов высокой энергии внутри стенки. Некоторые из этих электронов образуются достаточно близко к внутренней стенке трубки, чтобы уйти в заполняющий газ. Как только это происходит, электрон дрейфует к аноду, и возникает электронная лавина, как если бы свободный электрон был создан внутри газа. Лавина — это вторичный эффект процесса, который начинается внутри стенки трубки с образованием электронов, которые мигрируют на внутреннюю поверхность стенки трубки, а затем попадают в заполняющий газ. Этот эффект значительно ослабевает при низких энергиях ниже 20 кэВ.

Тонкостенный

Тонкостенные трубы используются для:

  • Обнаружение бета-излучения с высокой энергией, когда бета-излучение проникает через боковую часть трубки и напрямую взаимодействует с газом, но излучение должно быть достаточно энергичным, чтобы проникнуть через стенку трубки. Низкоэнергетический бета-сигнал, который может проникнуть через торцевое окно, будет остановлен стенкой трубы.
  • Обнаружение низкоэнергетического гамма- и рентгеновского излучения. Фотоны с меньшей энергией лучше взаимодействуют с наполняющим газом, поэтому эта конструкция сконцентрирована на увеличении объема наполняющего газа за счет использования длинной тонкостенной трубки и не использует взаимодействие фотонов в стенке трубки. Переход от тонкостенной конструкции к толстостенной происходит на уровнях энергии 300–400 кэВ. Выше этих уровней используются толстостенные конструкции, а ниже этих уровней преобладает эффект прямой ионизации газа.

Трубки G – M не обнаруживают нейтронов, поскольку они не ионизируют газ. Однако могут быть изготовлены нейтронно-чувствительные трубки, у которых либо внутренняя часть трубки покрыта бором , либо трубка содержит трифторид бора или гелий-3 в качестве заполняющего газа. Нейтроны взаимодействуют с ядрами бора, производя альфа-частицы, или непосредственно с ядрами гелия-3, производя ионы и электроны водорода и трития . Эти заряженные частицы затем запускают обычный лавинообразный процесс.

Закалка и мертвое время

Мертвое время и время восстановления в трубке Гейгера-Мюллера. Трубка не может производить дальнейшие импульсы в течение мертвого времени, а только генерирует импульсы меньшей высоты, пока не истечет время восстановления.

Идеальная трубка G – M должна генерировать одиночный импульс для каждого отдельного ионизирующего события, вызванного излучением. Он не должен давать паразитные импульсы и должен быстро вернуться в пассивное состояние, готовый к следующему событию излучения. Однако, когда положительные ионы аргона достигают катода и становятся нейтральными атомами, приобретая электроны, атомы могут быть подняты до повышенных уровней энергии. Затем эти атомы возвращаются в свое основное состояние, испуская фотоны, которые, в свою очередь, вызывают дополнительную ионизацию и тем самым ложные вторичные разряды. Если бы ничего не было сделано, чтобы противодействовать этому, ионизация продлилась бы и даже могла бы усилиться. Продолжительная лавина увеличит «мертвое время», когда новые события не могут быть обнаружены, и может стать непрерывной и повредить трубку. Поэтому для уменьшения мертвого времени и защиты трубки важна некоторая форма гашения ионизации, и используется ряд методов гашения.

Закалка газом

Трубки с самозатуханием или внутренним гашением останавливают разряд без внешней помощи, первоначально за счет добавления небольшого количества многоатомного органического пара, первоначально такого как бутан или этанол, но для современных трубок это галоген, такой как бром или хлор.

Если в трубку ввести плохой газовый гаситель, положительные ионы аргона во время своего движения к катоду будут многократно сталкиваться с молекулами гасителя газа и передавать им свой заряд и некоторую энергию. Таким образом, будут образовываться нейтральные атомы аргона, а ионы гасящего газа, в свою очередь, достигнут катода, получат от него электроны и перейдут в возбужденные состояния, которые будут распадаться за счет испускания фотонов, вызывая разряд в трубке. Однако эффективные молекулы-гасители при возбуждении теряют свою энергию не из-за испускания фотонов, а из-за диссоциации на нейтральные молекулы-гасители. Таким образом, не возникает паразитных импульсов.

Даже при химическом гашении в течение короткого времени после разрядного импульса существует период, в течение которого трубка становится нечувствительной и, таким образом, временно не может обнаружить прибытие любой новой ионизирующей частицы (так называемое мертвое время ; обычно 50–100 микросекунды). Это вызывает потерю счета при достаточно высоких скоростях счета и ограничивает эффективную (точную) скорость счета трубки G – M примерно 10 3 счета в секунду даже при внешнем гашении. В то время как трубка GM технически способна считывать более высокие скорости счета до того, как она действительно насыщается, связанный с этим уровень неопределенности и риск насыщения делают чрезвычайно опасным полагаться на более высокие показания скорости счета при попытке вычислить эквивалентную мощность дозы излучения на основе подсчета. темп. Следствием этого является то, что приборы с ионной камерой обычно предпочтительны для более высоких скоростей счета, однако современная технология внешнего гашения может значительно расширить этот верхний предел.

Внешняя закалка

Внешнее гашение, иногда называемое «активным гашением» или «электронным гашением», использует упрощенную высокоскоростную управляющую электронику для быстрого удаления и повторного приложения высокого напряжения между электродами в течение фиксированного времени после каждого пика разряда, чтобы увеличить максимальную скорость счета. и срок службы трубки. Хотя его можно использовать вместо охлаждающего газа, его гораздо чаще используют вместе с охлаждающим газом.

«Метод времени до первого счета» — это сложная современная реализация внешнего гашения, которая позволяет резко увеличить максимальную скорость счета за счет использования методов статистической обработки сигналов и гораздо более сложной управляющей электроники. Из-за неопределенности в скорости счета, вызванной упрощенной реализацией внешнего гашения, скорость счета трубки Гейгера становится крайне ненадежной, превышая приблизительно 10 3 импульсов в секунду. С помощью метода «время до первого счета» достижима эффективная скорость счета 10 5 отсчетов в секунду, что на два порядка больше, чем нормальный эффективный предел. Метод подсчета времени до первого значительно сложнее в реализации, чем традиционные методы внешнего гашения, и в результате этого он не получил широкого распространения.

Что такое дозиметр

дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик. Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение.

Я думаю, все согласятся, что щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов. Дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик.

Как сделать счетчик гейгера своими руками.

Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение. Щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов.

Виды счетчика Гейгера

Устройства представлены в двух вариантах:

  • Цилиндрические. Этот вид производится с использованием металлической гофрированной трубки с тонкими стенками. Рифленая поверхность придает гильзе дополнительный показатель жесткости, чтобы она была максимально устойчива к атмосферному давлению и не деформировалась. Торцы трубки оборудуются изоляторами для создания герметичности. Они сделаны из стекла и пластмассы термореактивного вида. На них расположены выводы для подключения плат прибора. Такой счетчик Гейгера-Мюллера применяется для регистрации как бета, так и гамма лучей.
  • Торцевые или плоские. Этот вид устройства регистрирует еще и на альфа излучение, которое отличается меньшей проходимостью частиц. Конструкция корпуса плоская. В нем есть окно из слюды, обеспечивающее лучшую проходимость частиц.

Счетчиками Гейгера можно просто и быстро найти источник ионизированного излучения и внутри помещений, и на открытой местности. Это довольно дешевые, но надежные и эффективные датчики, поэтому широко используются в таких приборах, как дозиметры. С их помощью можно проверить на радиацию:

  • стройматериалы:
  • одежду;
  • технику;
  • мебель;
  • продукты питания.

Как правильно выбирать

Чтобы точно ответить на вопрос, какой счетчик Гейгера лучше выбрать, необходимо рассматривать конкретные условия его применения и основные технические параметры:

  • Чувствительность – рассматривается как соотношение числа импульсов, задаваемых излучением, и количества микрорентген, выделяемого эталонным источником (имп./мкР). Скорость счета может измеряться и в импульсах за 1 сек. (имп./сек.).
  • Параметры площади, сквозь которую проходят частицы (см2). При ее большей величине количество улавливаемых частиц возрастает.
  • Рабочее напряжение. Его типичное значение составляет 400 В.
  • Ширина рабочей характеристики как расхождение между уровнем напряжения искрового пробоя и его значением в точке выхода на «плато». Стандарт – 100 В.
  • Наклон рабочей характеристики – допустимая статистическая ошибка при подсчетах (около 0,15%).
  • Рабочая температура (от -50 до +70 градусов).
  • Ресурс – максимальное число замеряемых импульсов до появления ошибки.
  • Мертвый период, когда проводится ток при срабатывании.
  • Собственный фон – излучение деталей устройства.
  • Диапазон возможной регистрации – спектр воспринимаемых фотонов и частиц.

Счетчик Гейгера является достаточно полезным устройством, которое используется в работе дозиметров при оценке параметров среды. Существуют разные модели с определенными техническими характеристиками. Они предназначены для регистрации гамма-фотонов, а также альфа и бета-излучения.

Из чего состоит дозиметр.

Часто задаваемые вопросы

Чем отличается счетчик Гейгера от дозиметра?
Счетчик Гейгера – это деталь, датчик ионизирующего излучения в дозиметрической аппаратуре. Дозиметр – прибор, определяющий накопленную дозу ионизирующего излучения. Радиометр – прибор, показывающий мощность дозы ионизирующего излучения в данный момент времени в данной точке.

Почему счетчик Гейгера трещит?
Электрические импульсы во внешней цепи, которые возникают при вспышке разряда, усиливаются. Именно их и регистрирует магнитный счетчик. Число таких импульсов зависит от уровня радиации и, соответственно, напряжения на его электродах. Чем выше радиация, тем сильнее треск.

Какие частицы регистрирует счетчик Гейгера?
Счетчик Гейгера способен регистрировать гамма-частицы и бетта-частицы так как остальные не могут проникнуть в счетчик и вызвать ионизации аргона. внутри счетчика.

Измерение альфа-, бета- и гамма-излучения

Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет — тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение – это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.

Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая – нескольких микрометров (максимум миллиметров) – в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.

Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.

Рекомендации

  1. ^ » Трубки Гейгера-Мюллера; выпуск 1 ’’, изданный Centronics Ltd, Великобритания.
  2. ^ Гленн Ф. Нолл. Обнаружение и измерение радиации, третье издание 2000 г. Джон Уайли и сыновья, ISBN 0-471-07338-5
  3. ^
  4. ^
  5. Видеть:

    • Х. Гейгер и В. Мюллер (1928), «Elektronenzählrohr zur Messung schwächster Aktivitäten» (Электронная счетная трубка для измерения самой слабой радиоактивности), Die Naturwissenschaften (Науки), т. 16, нет. 31, страницы 617–618.
    • Гейгер, Х. и Мюллер, В. (1928) «Das Elektronenzählrohr» (Электронная счетная трубка), Physikalische Zeitschrift, 29: 839-841.
    • Гейгер, Х. и Мюллер, В. (1929) «Technische Bemerkungen zum Elektronenzählrohr» (Технические примечания по электронной счетной трубке), Physikalische Zeitschrift, 30: 489-493.
    • Гейгер, Х. и Мюллер, В. (1929) «Demonstration des Elektronenzählrohrs» (Демонстрация электронно-счетной трубки), Physikalische Zeitschrift, 30: 523 и далее.

Заключение

Счетчик Гейгера – это прибор, который улавливает и подсчитывает количество попавших на него частиц. Он способен улавливать альфа-, бета-, гамма частицы, реагирует на рентгеновское, нейтронное и ультрафиолетовое излучения. Основная часть этого прибора это специальная трубка, наполненная различными газами и имеющая внутри два электрода.

Дополнительную информацию по данной теме можно узнать из файла Счётчик Гейгера-Мюллера.». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу. В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.sdelaysam-svoimirukami.ru

www.pvsm.ru

www.usamodelkina.ru

www.neonkaraoke.ru

www.xn--d1aspaq3c.xn--p1ai

www.masterclub.online

www.samodelnie.ru

Мне нравится1Не нравится

Предыдущая
ПрактикаСоединение оптоволоконного кабеля в домашних условиях

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector