Фотодиоды принцип работы основные характеристики. фотодиоды. виды и устройство. работа и характеристики
Содержание:
- Основные параметры
- Режимы работы
- Принцип действия фотодиода
- Применение фотодиодов в оптоэлектронике[править | править код]
- Параметры и характеристики фотодиодов[править | править код]
- Исчерпывающая информация о фотодиодах
- Фотоэлектрический режим в фотодиодных схемах
- Световая характеристика и чувствительность фотодиода.
- Параметры и характеристики фотодиодов
- Что такое фотодиод?
- Области применения фотодиодов
- Нежелательные и желаемые эффекты фотодиода
- Фотодиоды серии BS без иммерсии и c микроиммерсионной линзой
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
- Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
- Спектральная. Характеризует влияние длины световой волны на фототок
- Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
- Порог чувствительности – минимальный световой поток, на который реагирует диод
- Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
- Инерционность
Режимы работы
Фотодиоды разделяют по режиму функционирования.
Режим фотогенератора
Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Режим фотопреобразования
Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Принцип действия фотодиода
Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.
Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.
Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.
Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.
Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве . Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.
В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.
Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.
Применение фотодиодов в оптоэлектронике[править | править код]
Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах, поэтому он находит широкое применение во многих областях.
В оптоэлектронных интегральных микросхемах фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.
Многоэлементные фотоприемники — это приборы сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие. Они относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ. Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения). Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик (ток, заряд, напряжение) пропорционален освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.
При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.
Фотодиоды активно используются в оптронах, оптоэлектронныых приборах, в которых имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус. В электронной схеме оптрон выполняет функцию элемента связи, в одно из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов. Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки.
В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, пультах дистанцианного управления, фотокамерах, различных сенсорных устройствах, использующих данную технологию. Одно из важных применений — в медицинских приборах, в частности — в устройствах для проведения компьютерной томографии.
Параметры и характеристики фотодиодов[править | править код]
Параметры:
- чувствительность
- отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.
-
Si,Φv=IΦΦvS_{i,{\Phi_v}}=\frac {I_\Phi}{\Phi_v}
; Si,Ev=IΦEvS_{i,{E_v}}=\frac {I_\Phi}{E_v}
— токовая чувствительность по световому потоку -
Su,Φe=UΦΦeS_{u,{\Phi_e}}=\frac {U_\Phi}{\Phi_e}
; Si,Ee=UΦEeS_{i,{E_e}}=\frac {U_\Phi}{E_e}
— вольтаическая чувствительность по энергетическому потоку
- шумы
- помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
-
вольт-амперная характеристика (ВАХ)
- зависимость выходного напряжения от входного тока. UΦ=f(IΦ)U_\Phi=f(I_\Phi)
- спектральные характеристики
- зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
- световые характеристики
- зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
-
постоянная времени
- это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
-
темновое сопротивление
- сопротивление фотодиода в отсутствие освещения.
- инерционность
Исчерпывающая информация о фотодиодах
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
- При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
- Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
- Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
- Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток
Фотоэлектрический режим в фотодиодных схемах
Следующая схема представляет собой пример реализации фотоэлектрической системы.
Рисунок 1 – Пример включения фотодиода в фотоэлектрическом режиме
Эта схема на операционном усилителе называется трансимпедансным усилителем (TIA, transimpedance amplifier). Она разработана специально для преобразования сигнала тока в сигнал напряжения, причем отношение тока к напряжению определяется значением резистора обратной связи Rос. Неинвертирующий вход операционного усилителя соединен с землей, и если мы применим предположение о виртуальном коротком замыкании, мы узнаем, что на инвертирующем входе всегда будет примерно 0 В. Таким образом, катод и анод фотодиода поддерживаются при напряжении 0 В.
Я не уверен, что «фотоэлектрическая» – это совсем точное название этой реализации на базе операционного усилителя. Не думаю, что фотодиод работает как солнечный элемент, генерирующий напряжение за счет фотоэлектрического эффекта. Но «фотоэлектрический» – это общепринятая терминология, нравится мне это или нет. Термин «режим нулевого смещения», я думаю, подходит лучше, потому что мы можем использовать этот же трансимпедансный усилитель с фотодиодом в фотоэлектрическом или фотопроводящем режиме, и, таким образом, отсутствие напряжения обратного смещения является наиболее заметным отличительным фактором.
Когда использовать фотоэлектрический режим
Преимущество фотоэлектрического режима – снижение темнового тока. В обычном диоде прикладывание напряжения обратного смещения увеличивает обратный ток, потому что обратное смещение уменьшает диффузионный ток, но не уменьшает дрейфовый ток, а также из-за утечки.
То же самое происходит и с фотодиодом, но обратный ток называется темновым током. Более высокое напряжение обратного смещения приводит к увеличению темнового тока, поэтому, используя операционный усилитель для удержания фотодиода примерно при нулевом смещении, мы практически исключаем темновой ток. Таким образом, фотоэлектрический режим хорош для приложений, которым необходимо максимизировать эффективность при низкой освещенности.
Световая характеристика и чувствительность фотодиода.
Рассмотрим связь тока короткого замыкания If с величиной светового потока , падающего на n-область фотодиода. Число квантов света, падающих в единицу hвремени на всю поверхность n-области фотодиода, равно /hv,
где hv — энергия одного кванта. Величина If пропорциональна числу квантов света, поглощаемых в полупроводнике в единицу времени
If= ,
(6)
Где β- квантовый выход фотоионизации (число электронно-дырочных пар, образуемых одним квантом света);
χ — коэффициент переноса, показывающий, какая часть генерированных светом носителей не прорекомбинировала на пути к p-n-переходу.
Зависимость фототока фотоионизации фотодиода от светового потока и в фотодиодном режиме строго линейна в большом диапазоне величин световых потоков.
Чувствительностью фотодиода называется отношение фототока к величине светового потока
K=If / .
(7)
Подставляя (6) в (7) и учитывая, что v=c/λ,
получаем выражение, для спектральной чувствительности фотодиода
K=
(8)
где с —
скорость света.
В действительности К уменьшается в области коротких волн значительно быстрее, чем это дает формула (8).Это связано с тем, что при уменьшении длины волны в области фундаментального поглощения, коэффициент поглощения обычно увеличивается, это приводит к тому, что световая энергия поглощается все в более тонком приповерхностном слое, где скорость рекомбинации не равновесных носителей за счет поверхностных центров рекомбинации значительно больше, чем в глубине материала.
В области же длинных волн происходит спад фоточувствительности, соответствующий краю собственного поглощения материала, когда энергия кванта h становится равной ширине запрещенной зоны ∆Е.
Чувствительность фотодиодов к свету сложного спектрального состава называется интегральной чувствительностью.
Экспериментальная часть
Описание установки
Изучение свойств полупроводникового фотодиода производится на установке, состоящей из оптической скамьи, на которой расположен фотодиод в светонепроницаемом корпусе, и осветителя. Освещенность изменяется изменением расстояния между фотодиодом и источником света (при этом крышка светонепроницаемого корпуса должна быть снята). Световой поток, падающий на фотодиод, вычисляется по формуле
Φ= ,
С-
постоянная
Где s
–активная площадь фотодиода
IL
-сила света лампы накаливания
-расстояние между нитью лампы и поверхностью диода. Схема включения фотодиода приведена на. рис. 6:
Рис. 6 |
Π- потенциометр, регулирующий напряжение внешнего источника ЭДС Eвн;
R-сопротивление нагрузки;
V-вольтметр, измеряющий напряжение на фотодиоде;
μA- микроамперметр;
Л-
осветительная лампа.
Порядок выполнения работы
Задание:
1) снять и построить вольт- амперные характеристики фотодиода в фотодиодном режиме при 4 различных световых потоках Ф и при Ф = 0 (табл. 1);
2) снять и построить световую характеристику фотодиода: I=ƒ , в фотодиодном режиме при 3-х различных напряжениях на фотодиоде, в том числе при напряжении, равном 0, и постоянном сопротивлении нагрузки (табл. 2);
3) Вычислить интегральную чувствительность фотодиода по данным пп. 1 и 2 (значение постоянной C указано на стенде).
Таблица 1
,cм | Φ | U, B |
I,мкА |
Таблица 2
l,cм | |
Φ | |
U1=0 | I мкА |
U2 | I мкА |
U3 | I мкА |
Контрольные вопросы
1. Что такое внутренний фотоэффекти чем определяется его длинноволновая граница для беспримесного полупроводника?
2. Как образуется фототок и фотоэдс в p-n-переходе?
3.Что такое спектральная чувствительность фотодиода и от каких факторов она зависит?
4. Что такое интегральная чувствительность фотодиода?
5.Каково аналитическое выражение ВАХ диода и фотодиода?
6.Что такое световая характеристика светодиода?
7.Почему для работы фотодиода используется обратная ветвь ВАХ?
8. В чем различие вентильного и фотодиодного режима работы освещенного перехода?
ЛИТЕРАТУРА
1. Епифанов Г. И. Физические основы микроэлектроники. М., «Советское радио», 1971.
Параметры и характеристики фотодиодов
Параметры:
- чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. Si,Φv=IΦΦv{\displaystyle S_{i,{\Phi _{v}}}={\frac {I_{\Phi }}{\Phi _{v}}}}; Si,Ev=IΦEv{\displaystyle S_{i,{E_{v}}}={\frac {I_{\Phi }}{E_{v}}}} — токовая чувствительность по световому потоку Su,Φe=UΦΦe{\displaystyle S_{u,{\Phi _{e}}}={\frac {U_{\Phi }}{\Phi _{e}}}}; Si,Ee=UΦEe{\displaystyle S_{i,{E_{e}}}={\frac {U_{\Phi }}{E_{e}}}} — вольтаическая чувствительность по энергетическому потоку
- шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
- вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока. UΦ=f(IΦ){\displaystyle U_{\Phi }=f(I_{\Phi })}
- спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
- световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
- постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
- темновое сопротивление сопротивление фотодиода в отсутствие освещения.
- инерционность
Что такое фотодиод?
Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.
В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.
Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.
Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.
Области применения фотодиодов
- Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
- Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.
Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.
Нежелательные и желаемые эффекты фотодиода
Любой p – n-переход, если он освещен, потенциально является фотодиодом. Полупроводниковые устройства, такие как диоды, транзисторы и ИС, содержат p – n-переходы и не будут правильно работать, если они будут освещены нежелательным электромагнитным излучением (светом) с длиной волны, подходящей для создания фототока. Этого можно избежать, заключив устройства в непрозрачные корпуса. Если эти корпуса не полностью непрозрачны для излучения высокой энергии (ультрафиолета, рентгеновских лучей, гамма-лучей), диоды, транзисторы и ИС могут работать неправильно. из-за индуцированных фототоков. Фоновое излучение от упаковки также является значительным.Радиационное упрочнение смягчает эти эффекты.
В некоторых случаях эффект действительно нужен, например, чтобы использовать Светодиоды как светочувствительные устройства (см. Светодиод как датчик света) или даже для сбор энергии, затем иногда называли светодиоды и светопоглощающие диоды (ВЕДЕТ).
Фотодиоды серии BS без иммерсии и c микроиммерсионной линзой
Конструкция: : BS (back side illuminated) – освещаемые со стороны подложки. Чип размером 0.5×0.5 мм и площадью фоточувствительной площадки 0.35×0.35 мм. Используются те же фотоприемные структуры, что и в иммерсионных фотодиодах с линзой из Si (cерии Sr/Su/Cy). Смонтированы на промежуточных подложках из Si с рефлектором, на корпусах ТО18, ТО39, и ТО46, TO39 с термоэлектрическим охладителем. Внешний вид изделия аналогичен фотодиодам серии FS.
Преимущества: Меньшие размеры по сравнению с фотодиодами серий Sr/Su/Cy. Возможность сборки на их основе монолитных матричных приемников размерностью до 4×4. При использовании микроиммерсионных линз, для одиночных фотоприемников увеличение обнаружительной способности составляет около 2-х раз при увеличении площади чувствительной площадки до D=1 мм. Особенностью является наличие коротковолновой фоточувствительности (не показанной на графике ниже) при наличии боковой засветки.
λ макс, мкм | S I , А/Вт | D*, смГц 1/2Вт -1 | R , Ом | A, мм×мм | F, град. | |
---|---|---|---|---|---|---|
2.85 | ≥1 | ≥1E10 | ≥1000 | 0.35×0.35 | ~60 (140) | PD29BS |
3.4 | ≥2.5 | ≥1E10 | ≥200 | 0.35×0.35 | ~60 (140) | PD34BS |
3.8 | ≥2.5 | ≥5E9 | ≥40 | 0.35×0.35 | ~60 (140) | PD38BS |
4.2 | ≥2.5 | ≥2.5E9 | ≥20 | 0.35×0.35 | ~60 (140) | PD42BS |