Разница между моделью tcp/ip и моделью osi
Содержание:
- Масштабируемость Ethernet
- Описание уровней сетевой модели
- Межуровневые функции
- Общая характеристика модели OSI
- Недостатки OSI
- Уровни OSI
- Уровни модели TCP / IP
- Уровень 2 — канальный уровень
- Сетевая модель OSI и ее 7 уровней: обзор с примерами от Бородача
- Эталонная модель OSI
- 3 уровень – сетевой (L3)
- Методы выделения кадров
Масштабируемость Ethernet
Оказывается, Ethernet и другие технологии канального уровня не подходят для создания крупной сети, которая может охватить весь мир из-за того, что у них есть существенные ограничения по масштабируемости.
Давайте рассмотрим существующие ограничения. Коммутаторы изернет для передачи кадра пользуются таблицами коммутации. И эта таблица должна содержать все MAК-адреса компьютеров в сети. Если для локальной сети это можно сделать, то для глобальной сети, в которой несколько миллиардов устройств, никакому коммутатору не хватит памяти, чтобы хранить подобную таблицу. И искать нужный порт в такой огромной таблице будут очень долго.
Следующая проблема в том, что если коммутатор не понимает куда отправлять кадр, он передает его на все порты, надеясь, что где-то там находиться получатель. Такой подход тоже работает в локальных сетях, но в глобальных сетях не работает. Если в интернет мы не знаем куда отправить пакет и будем пересылать всем компьютерам в интернете, то через некоторое время, мы засорим сеть такими мусорными пакетами и это приведет к отказу в обслуживании.
Другая проблема это отсутствие дублирующих путей между коммутаторами. В Ethernet у нас всегда должно быть одно соединение, чтобы не образовалось кольца, иначе сеть будет перегружена широковещательным штормом. В Ethernet есть технология STP, которая позволяет создавать несколько связей между коммутаторами, но в каждый момент времени активно всего одно соединение.
Рассмотрим пример, в нашей сети есть несколько коммутаторов. Они соединены между собой и есть такое соединение, которое приводит к образованию кольца.
В сети запускается протокол STP, коммутаторы выбирают корневой. Рассчитывают расстояние до корневого и отключают одно из соединений.
Если коммутаторы используются для построения локальной сети, где расстояние между коммутаторами небольшое, то такой подход работает отлично. Но, предположим, что мы строим глобальную сеть и если мы хотим отправить данные из Екб в Челябинск, который является соседним городом и расположен близко, то на уровне Ethernet мы это сделать не сможем, потому что прямое соединение отключено протоколом STP.
Необходимо передавать данные через другие города, расстояние гораздо больше, поэтому скорость передачи будет существенно ниже. От этого хотелось бы избавиться.
Масштабируемость на сетевом уровне
Что делает сетевой уровень, чтобы обеспечить масштабирование и построить такую сеть, которая способна объединить все компьютеры во всем мире, например сеть интернет.
- Первое это агрегация адресов. Сетевой уровень работает не с отдельными адресами, а с группами адресов, которые объединяются и такие блоки адресов называются сетью.
- Пакеты, для которых путь доставки неизвестен на сетевом уровне отбрасываются. Это обеспечивает защиту составной сети от циркуляции мусорных пакетов.
- И возможность наличия нескольких активных путей в сети. Это является одной из причин создания сетей с пакетной коммутацией. В нашей сети всегда есть некое количество активных путей между отправителем и получателем. И данные могут пройти по любому из этих путей. В том числе, если один путь выйдет из строя, то другой путь останется доступным. Но если у нас есть несколько путей, то на сетевом уровне появляется задача маршрутизации. То есть, на каждом этапе мы должны определять, по какому пути мы отправим ту или иную порцию данных.
Описание уровней сетевой модели
Уровень приложений (7) (прикладной уровень) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.
На этом уровне работают такие протоколы как: HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.
Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.
На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.
Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.
На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.
Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня — это TCP и UDP. TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.
Сетевой уровень (3) – он предназначен для определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF.
Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.
Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы.
Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.
Межуровневые функции
Межуровневые функции — это сервисы, которые не привязаны к данному уровню, но могут влиять на более чем один уровень. Некоторые ортогональные аспекты, такие как управление и безопасность , охватывают все уровни (см. Рекомендацию ITU-T X.800). Эти услуги направлены на улучшение триады ЦРУ — конфиденциальность , целостность и доступность — передаваемых данных. На практике межуровневые функции являются нормой, поскольку доступность услуги связи определяется взаимодействием между сетевым дизайном и протоколами управления сетью .
Конкретные примеры межуровневых функций включают следующее:
Служба безопасности (электросвязь), как определено в рекомендации ITU-T X.800.
Функции управления, т. Е. Функции, которые позволяют настраивать, создавать экземпляры, отслеживать, завершать обмен данными между двумя или более объектами: существует специальный протокол уровня приложений, общий протокол информации управления (CMIP) и соответствующая ему служба, служба общей информации управления (CMIS ), они должны взаимодействовать с каждым слоем, чтобы иметь дело со своими экземплярами.
Многопротокольная коммутация по меткам (MPLS), ATM и X.25 — это протоколы 3a. OSI подразделяет сетевой уровень на три подуровня: 3a) доступ к подсети, 3b) зависимая от подсети конвергенция и 3c) независимая от подсети конвергенция. Он был разработан для предоставления унифицированной службы передачи данных как для клиентов с коммутацией каналов, так и для клиентов с коммутацией пакетов, которые обеспечивают модель обслуживания на основе дейтаграмм . Его можно использовать для передачи множества различных видов трафика, включая IP-пакеты, а также собственные кадры ATM, SONET и Ethernet
Иногда можно увидеть ссылку на слой 2.5.
Перекрестное планирование MAC и PHY важно в беспроводных сетях из-за изменяющегося во времени характера беспроводных каналов. Путем планирования передачи пакетов только в благоприятных условиях канала, что требует, чтобы MAC-уровень получал информацию о состоянии канала с PHY-уровня, пропускная способность сети может быть значительно улучшена, и можно избежать потерь энергии.
Общая характеристика модели OSI
https://youtube.com/watch?v=DcV3HY6lFP4%3F
В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.
К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.
Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.
Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.
Недостатки OSI
Семиуровневая модель OSI считается устаревшей. На момент выхода она уже не поддерживала все актуальные стандарты, а сейчас эта проблема стала более выраженной. Поэтому современные компании ориентируются на TCP/IP. Еще один недостаток модели – плохо проработанная технология. Протоколы OSI дублируют друг друга, распределение функций немного странное.
При построении сети используются не все уровни модели ОСИ. Обычно для настройки оборудования инженерам нужно знать первые 4 уровня. L5 и L6 при работе с реальными сетями практически не применяются.
Модель ISO/OSI является закрытой. Её в основном использовали телекоммуникационные компании Франции, США, Англии
В тоже время стек протоколов TCP/IP разрабатывался как открытая модель, что и привлекло внимание разработчиков по всему миру.
Уровни OSI
Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.
Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.
Задачи компьютера ОТПРАВИТЕЛЯ:
- Взять данные из приложения
- Разбить их на мелкие пакеты, если большой объем
- Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.
Задачи компьютера ПОЛУЧАТЕЛЯ:
- Принять пакеты данных
- Удалить из него служебную информацию
- Скопировать данные в буфер
- После полного приема всех пакетов сформаровать из них исходный блок данных
- Отдать его приложению
Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.
Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.
Разберем их подробнее.
6. Уровень представления (Presentation Layer)
Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.
Ваше мнение — WiFi вреден?
Да
22.91%
Нет
77.09%
Проголосовало: 27942
5. Сеансовый уровень (Session Layer)
У него много задач.
- Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
- Здесь же происходит распознавание имен и защита:
- идентификация — распознавание имен
- аутентификация — проверка по паролю
- регистрация — присвоение полномочий
- Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
- Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
- Сегментация — разбивка большого блока на маленькие пакеты.
4. Транспортный уровень (Transport Layer)
Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:
- Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
- Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.
3. Сетевой уровень (Network Layer)
Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).
2. Канальный уровень (Data Link Layer)
Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.
При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.
При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.
1. Физический уровень (Transport layer)
Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.
Уровни модели TCP / IP
- Уровень сетевого интерфейса: Этот уровень действует как интерфейс между хостами и каналами передачи и используется для передачи дейтаграмм. Он также определяет, какие операции должны выполняться с помощью таких ссылок, как последовательный канал и классический Ethernet, для выполнения требований уровня Интернета без установления соединения.
- Интернет-уровень: Цель этого уровня — передать независимый пакет в любую сеть, которая движется к месту назначения (может находиться в другой сети). Он включает IP (Интернет-протокол), ICMP (Интернет-протокол управляющих сообщений) и ARP (протокол разрешения адресов) в качестве стандартного формата пакета для уровня.
- Транспортный уровень: Он обеспечивает бесперебойную сквозную доставку данных между исходным и целевым хостами в форме дейтаграмм. Протоколы, определяемые этим уровнем, — это TCP (протокол управления передачей) и UDP (протокол дейтаграмм пользователя).
- Уровень приложения: Этот уровень позволяет пользователям получать доступ к услугам глобального или частного Интернета. На этом уровне описываются различные протоколы: виртуальный терминал (TELNET), электронная почта (SMTP) и передача файлов (FTP). Некоторые дополнительные протоколы, такие как DNS (система доменных имен), HTTP (протокол передачи гипертекста) и RTP (транспортный протокол в реальном времени). Работа этого уровня представляет собой комбинацию уровня приложения, представления и сеанса модели OSI.
Уровень 2 — канальный уровень
Главная задача канального уровня удостовериться, что канал готов к передаче данных и ничто не станет угрожать надежности этой операции и целостности передаваемых пакетов. В идеале протоколы канального уровня и сетевое оборудование должны проверить, свободен ли канал для передачи данных, не имеется ли коллизий передачи и т. п.
Такую проверку необходимо выполнять каждый раз, так как локальная сеть чаше всего состоит более, чем из двух компьютеров (хотя даже в таком случае канал может быть занят). Обнаружив, что канал свободен, элементы этого уровня делят данные, которые необходимо передать другому компьютеру, на более мелкие части — кадры. Затем каждый кадр снабжается контрольной сумой и отсылается. Приняв этот кадр, получатель проверяет контрольные суммы и. если они совпадают, принимает его и посылает отправителю подтверждение о доставке В противном случае получатель игнорирует кадр и фиксирует ошибку, после чего кадр передастся заново. Так. кадр за кадром, передастся необходимая информация.
На канальном уровне, как и па физическом, также существуют различия между проводными и беспроводными сетями. Это связано со спецификой сетевого оборудования. Так. доступное на данный момент беспроводное оборудование работает только в полудуплексном режиме: в один момент времени данные могут только приниматься или только передаваться. Этот недостаток резко уменьшает эффективность обнаружения коллизий в сети и, соответственно, понижает скорость передачи данных.
Поскольку модель ISO/OSI жестко регламентирует действия каждого уровня, то разработчикам пришлось немного модернизировать протоколы канального уровня для работы в беспроводных сетях. В частности, для беспроводной передачи данных используются протоколы CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance, много станционный доступ к среде передачи с контролем несущей и избежанием коллизий) или DCF (Distributed Coordination Function, распространяемая координирующая функция).
Протокол CSMA/CA предназначен для обнаружения конфликтов при передаче данных. Он использует явное подтверждение доставки данных, сообщающее о том. что передаваемый пакет доставлен и не поврежден.
Данный метод работает следующим образом. Когда одни компьютер собирается передать информацию другому, он посылает всем компьютерам сети короткое сообщение RTS (ReadyТо Send, готов к передаче), содержащее информацию о получателе и времени, необходимом для передачи данных. Получив такой пакет, все компьютеры прекращают на указанный промежуток времени передачу собственных данных. Компьютер, для которого предназначен пакет, отсылает отправителю сообщение CTS (ClearТо Send, свободен для передачи) о готовности к приему данных Получив такое сообщение, компьютер-отправитель пересылает первую порцию данных и ждет подтверждения доставки пакета. После такого подтверждения передача данных продолжается. Если сообщение об успешной доставке не пришло, то компьютер-отправитель повторно передает необходимый пакет.
Такой метод передачи гарантирует доставку пакетов данных, однако в го же время заметно снижает скорость передачи. Именно поэтому беспроводные сети намного медленнее проводных и останутся таковыми надолго, если не навсегда. Чтобы хоть как-то повысить скорость передачи данных но таким сетям, специальный протокол канального уровня фрагментирует пересылаемые пакеты (разбивает их на более мелкие части), что увеличивает шанс их удачной передачи.
Сетевая модель OSI и ее 7 уровней: обзор с примерами от Бородача
Всем привет, и с вами снова Бородач! У нас очередной курс «Для самых маленьких», и поговорим мы про модель OSI. Многие системные администраторы и юные IT инженеры что-то слышали про это, но боялись спросить. Сразу скажу, что любой специалист, программист, инженер или администратор, работающий с сетями и интернетом, должен на зубок знать всё то, о чем я расскажу ниже. Статья подойдет как для специалистов, так и для чайников.
OSI модель, или модель стека протоколов TCP/IP, или модель открытых систем, или модель сетевого взаимодействия – это ядро, на котором управляется и взаимодействует любая современная сеть и подключенные к ней устройства. Поэтому её желательно знать всем тем, кто работает в «сетевой» индустрии. Без данных знаний даже в том же программировании будет достаточно тяжело.
Модели OSI позволяют взаимодействовать устройствам в компьютерной сети по определенным правилам и протоколам. Если раскрыть расшифровку аббревиатуры термина, то получится английская надпись: «Open Systems Interconnection Basic Reference Model», – что дословно можно перевести как: «Эталонная Модель Взаимодействия Открытых Систем». В модели существует 7 уровней, которые используются для передачи информации от одного устройства к другому.
- Уровни
- Принцип работы
- Уровень 1 – Физический
- Уровень 2 – Канальный
- Уровень 3 – Сетевой уровень
- Уровень 4 – Транспортный
- Уровень 5 – Сеансовый
- Уровень 6 – Представительский
- Уровень 7 – Прикладной уровень
- Видео
Эталонная модель OSI
Начальная стадия развития сетей LAN, MAN и WAN имела во многих отношениях хаотический характер. В начале 80-х годов XX века резко увеличились размеры сетей и их количество. По мере того как компании осознавали, что, используя сетевые технологии, они могут сэкономить значительные средства и повысить эффективность своей работы, они создавали новые сети и расширяли уже существовавшие с той же быстротой, с какой появлялись новые сетевые технологии и новое оборудование.
Однако к середине 80-х годов эти же компании стали испытывать трудности с расширением уже существующих сетей. Сетям, использовавшим различные спецификации и реализованным различными способами, стало все труднее осуществлять связь друг с другом. Компании, оказавшиеся в такой ситуации, первыми осознали, что необходимо отходить от использования фирменных (proprietary) сетевых систем.
Для решения проблемы несовместимости сетей и их неспособности осуществлять связь друг с другом международная организация по стандартизации (International Organization for Standardization — ISO) разработала различные сетевые схемы, такие, как DECnet, системная сетевая архитектура (Systems Network Architecture — SNA) и стек протоколов TCP/IP. Целью создания таких схем была разработка некоторого общего для всех пользователей набора правил работы сетей. В результате этих исследований организация ISO разработала сетевую модель, которая смогла помочь производителям оборудования создавать сети, совместимые друг с другом и успешно взаимодействовавшие. Процесс подразделения сложной задачи сетевой коммуникации на отдельные более мелкие можно сравнить с процессом сборки автомобиля.
Процесс проектирования, изготовления деталей и сборки автомобиля, если его рассматривать как единое целое, является весьма сложным. Маловероятно, что нашелся бы специалист, который смог бы решить все требуемые задачи при сборке автомобиля: собрать машину из случайным образом подобранных деталей или, скажем,
при изготовлении конечного продукта непосредственно из железной руды. По этой причине проектированием автомобиля занимаются инженеры»проектировщики, инженеры-литейщики проектируют формы для литья деталей, а сборочные инженеры и техники занимаются сборкой узлов и автомобиля из готовых деталей.
Эталонная модель OSI (OSI reference model), обнародованная в 1984 году, была описательной схемой, созданной организацией ISO. Эта эталонная модель предоставила производителям оборудования набор стандартов, которые обеспечили большую совместимость и более эффективное взаимодействие различных сетевых технологий и оборудования, производимого многочисленными компаниями во всем мире.
Эталонная модель OSI является первичной моделью, используемой в качестве
основы для сетевых коммуникаций.
Хотя существуют и другие модели, большинство производителей оборудования и программного обеспечения ориентируются на эталонную модель OSI, особенно когда желают обучить пользователей работе с их продуктами. Эталонная модель OSI в настоящее время считается наилучшим доступным средством обучения пользователей принципам работы сетей и механизмам отправки и получения данных по сети.
Эталонная модель OSI определяет сетевые функции, выполняемые каждым ее уровнем
Что еще более важно, она является базой для понимания того, как информация передается по сети. Кроме того, модель OSI описывает, каким образом информация или пакеты данных перемещается от программ»приложений (таких, как электронные таблицы или текстовые процессоры) по сетевой передающей среде (такой, как провода) к другим программам»приложениям, работающим на другом компьютере этой сети, даже если отправитель и получатель используют разные виды передающих сред
3 уровень – сетевой (L3)
На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.
Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.
При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.
L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.
Методы выделения кадров
Чтобы определить, где в потоке бит начинаются и заканчиваются отдельные frame, были придуманы следующие методы:
- Указание количества байт;
- Вставка байтов (byte stuffing) и битов (bit stuffing);
- Средства физического уровня.
Указатель количества байт
Наипростейший способ определить, где начинается и заканчивается кадр — добавлять длину этого кадра в начало кадра. Например, на картинке ниже показано 3 кадра выделенных разным цветом. В начале каждого кадра указано количество байт. Синим цветом — 6, желтым — 8, зеленым — 4.
Этот метод прост в реализации, но есть недостаток, искажение данных при передаче по сети. Например, при передаче первого кадра появилось искажение и вместо длины кадра шесть байт, получатель получил семь байт.
Получатель посчитает, что семь это длина кадра. Далее идет длина следующего кадра. Здесь она два байта, затем длина следующего кадра семь. Если у нас произошла хоть одна ошибка, то будет нарушена последовательность чтений. Следовательно такой метод на практике не годится к применению.
Вставка byte и bit
Чтобы определить начало и конец кадра, в начале и конце каждого кадра используют специальные последовательности байт или бит. Вставка байтов применялась в протоколах BSC компании IBM, в котором отправлялись обычные текстовые символы.
Перед передачей каждого фрейма добавлялись байты DLE STX (start of text), а после окончания передачи фрейма DLE ETX (end of text). Проблема может возникнуть в том, что в данных тоже может встретиться точно такая же последовательность.
Чтобы отличать последовательность, которая встречается в данных от управляющих символов используются Escape последовательности. В протоколе BSC это тоже последовательность символов DLE (data link escape). Если какая-то последовательность управляющих символов встречается в данных перед ними добавляются escape последовательности DLE, чтобы протокол понимал, что в реальности это данные, а не управляющие символы.
Вставка битов применяется в более современных протоколах, таких как HDLC и PPP. Здесь перед началом и концом каждого кадра добавляется последовательность бит состоящая из 01111110. Может возникнуть проблема, если в данных встречаются подряд идущие 6 или более единиц. Чтобы решить эту задачу в данные, после каждых пяти последовательно идущих 1 добавляется 0. Затем, как получатель прочитал 5 последовательно идущих 1 и встретил 0, то он, этот 0 игнорирует.
Средства физического уровня
Другой вид определения начала и конца кадра, это использование средств физического уровня и он применяется в технологии Ethernet. В первом варианте технологии ethernet использовалась преамбула — это последовательность данных, которая передается перед началом каждого кадра. Она состоит из 8 байт. Первые семь байт состоят из чередующихся 0 и 1: 10101010. Последний байт содержит чередующиеся 0 и 1, кроме двух последних бит в котором две единицы. И именно такая последовательность говорит, что начинается новый кадр.
В более старых версиях используется избыточное кодирование, позволяющее определить ошибки, но при этом не все символы являются значащими. В технологии Fast Ethernet применили эту особенность кода и используют символы, которые не применяются для представления данных в качестве сигналов о начале и конце кадра.
Перед отправкой каждого кадра передаются символы J (11000) и K (10001), а после окончания отправки кадра передается символ T (01101).