Аварии с выбросом радиации

Меры государственной защиты

Организация, эксплуатирующая опасный производственный объект, в соответствии с законодательством РФ, обязана соблюдать требования промышленной безопасности:

  • планировать и выполнять мероприятия по предупреждению, локализации аварий и ликвидацию их последствий;
  • заключать договора с профессиональными аварийно-спасательными службами;
  • создавать аварийно-спасательные бригады из работников предприятия;
  • обучать служащих правилам поведения в случае заражения (угрозы заражения) опасными химическими веществами;
  • создать резерв материальных средств локализации и ликвидации последствий аварий;
  • обеспечить работу систем наблюдения при аварийной ситуаций с выбросом сильнодействующих ядовитых веществ.

На каждом крупном предприятии должна существовать пожарная, газоспасательная служба, установлена система противопожарной защиты, разработан план ликвидации работников при ЧС. Государственные контролирующие организации следят за работой всех этих служб.

Как радиация получается[править]

  • От радиоактивных элементов или изотопов. Самое известное ее происхождение. Суть в том, что лишь ограниченное число конфигураций протонов и нейтронов в атомных ядрах стабильно. Все остальные неустойчивы и самопроизвольно распадаются, порождая радиацию. Это и называется радиоактивностью.
    • Интенсивность радиоактивного распада элементов имеет не постоянную, а экспоненциальную зависимость: у каждого радиоактивного ядра есть какая-то вероятность распасться, и чем больше атомов элемента, тем больше распадов в единицу времени. Поэтому не говорят о периоде полного распада какого-то элемента, а говорят о периоде полураспада

      Поправка. Радиоактивный распад ядра — понятие вероятностное, а не линейное, период полураспада — это такой промежуток времени, что вероятность распадения каждого ядра за него составляет 50 %. По прошествии этого периода «ровно половина» ядер останется нераспавшейся с такими же шансами, с какими из груды подброшенных монет ровно половина выпадет орлом. Однако когда атомов очень много, из большого количества радиоактивного вещества один за период полураспада распадётся количество ядер, очень близкое к 50 %.

      . То есть о периоде, за который от исходного количества атомов остаётся ровно половина. Если подождать ещё один период полураспада, то от оставшейся половины тоже останется половина, то есть четверть от исходного. После трёх периодов полураспада — одна восьмая. Чем меньше период полураспада, тем интенсивнее излучаемая радиация.

  • От ядерных взрывов и реакторов. Основной источник нейтронного излучения.
  • Из космоса. В космосе летает огромное количество разнообразных частиц. Тут полный зоопарк: и протоны, и электроны, и позитроны, и всякая вконец экзотическая шушера типа мюонов или мезонов. Правда, гаммы довольно мало, а нейтронов, к счастью, практически нет, потому что в свободном виде нейтрон неустойчив, имеет период полураспада в 10 минут и космические расстояния преодолевать просто не успевает

    А вот возле ярко-голубых звёзд радиация сильнее и жёстче, как и в двойных системах с нейтронной звездой, особенно если на нейтронную звезду падает вещество. Нейтронные звезды также интересны вот чем: они настолько горячи, что их тепловое излучение доходит до рентгеновского диапазона. Также до рентгена и гаммы накаляется вещество, падающее в чёрные дыры.

    . Образуется вся эта музыка в звёздных ядерных реакциях. Два основных вида: солнечный ветер (то есть лучи добра от ближайшей звезды — довольно низкоэнергетические, но их много) и собственно космические (долетающие из дальнего космоса, их мало, но они очень быстрые и проникающие). У планет, обладающих магнитным полем, например, Земли и Юпитера, есть радиационные пояса, в которых за счёт этого самого поля улавливаются и концентрируются частицы. Радиация там значительно сильнее, чем во всём остальном космосе.

5.

ЗАМОК БРАВО — 1 МАРТА 1954 Г
Микронезийские острова в Тихом океане, были местом проведения более 20 испытаний ядерного оружия между 1946 и 1958 годами. Замок Браво был кодовым названием, данным первому тесту на термоядерную водородную бомбу сухого топлива. Тест был проведен 1 марта 1954 года на атолле Бикини на Маршалловых островах. Когда оружие было взорвано, произошел взрыв, в результате чего был образован кратер диаметром 6500 футов (2000 м) и глубиной 250 футов (75 м). Замок Браво был очень мощным ядерным устройством, с размером в 15 мегатонн, который намного превышал ожидания (4-6 мегатонн). Этот просчет привел к серьезному радиологическому загрязнению, когда-либо вызванному Соединенными Штатами. Что касается эквивалентности тоннажа ТНТ, то замок Браво был примерно в 1200 раз более мощным, чем атомные бомбы, которые были сброшены на Хиросиму и Нагасаки во время Второй мировой войны. Кроме того, радиационное облако загрязнило более семи тысяч квадратных миль окружающего Тихого океана, включая небольшие острова, такие как Ронджерик, Ронгелап и Утирик. Эти острова были эвакуированы, но все же местные жители были подвержены воздействию радиации. Уроженцы с тех пор страдали от врожденных дефектов. Японское рыболовное судно Daigo Fukuryu Maru также вступало в контакт с ядерными осадками, вызывая болезни для всех членов экипажа с одной фатальностью. Рыба, вода и земля были серьезно загрязнены, что сделало замок Браво одним из худших ядерных аварий.

Классификация радиационных аварий

Аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные и запроектные.

Проектная авария — авария, для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности.

Под проектной аварией понимается авария, для которой определены в проекте исходные, аварийные события, характерные для того или иного радиационно-опасного узла, конечные состояния (контролируемые состояния элементов и систем после аварии), а также предусмотрены системы безопасности, обеспечивающие ограничение последствий аварий установленными пределами.

Максимально проектные аварии характеризуются наиболее тяжелыми исходными событиями, обусловливающими возникновение аварийного процесса на данном объекте.

Эти события приводят к максимально возможным в рамках установленных проектных пределов радиационным последствиям.

Запроектная авария — вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям.

При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм.

Причины техногенных чрезвычайных ситуации

Техногенные катастрофы сопутствуют человеческой жизнедеятельности и напрямую связаны с ней. Именно поэтому человека, его умышленные или неумышленные действия, можно назвать основной причиной их появления. Вместе с тем выделяют следующие, более объективные, причины возникновения техногенных ЧС:

  • неудачное размещение объектов производства, хозяйственной или социальной инфраструктуры, в результате которого может возникнуть масштабная техногенная катастрофа;
  • отсталость в технологиях, применяемых при производстве; недостаточная внедряемость энергосберегающих и иных инновационных процессов;
  • высокий износ производственного оборудования, приводящий к предаварийным ситуациям;
  • увеличение производственных мощностей, приводящее к недостатку транспортных средств и нарушению техники безопасности;
  • недостаток высококвалифицированных работников, низкий уровень комфортности при производстве;
  • снижение производственной дисциплины, низкая ответственность должностных лиц;
  • отсутствие внутреннего контроля на объекте за существующими производственными технологиями;
  • низкий уровень техники безопасности, отсутствие соответствующих функциональных должностей;
  • недостатки существующих нормативных правовых актов, регулирующих технологические процессы;
  • воздействие внешних природных факторов, приводящих к образованию предаварийных ситуаций;
  • конструктивные недостатки при строительстве зданий, объектов хозяйственной и социальной инфраструктуры;
  • низкий уровень управления контролем доступа в здание.

Справка: на каждом энергообъекте Российской Федерации происходит до 100 страховых случаев предаварийных ситуаций, связанных с износом оборудования. Меры по предотвращению ЧС техногенного характера Мероприятия по предотвращению техногенных аварий прежде всего основаны на заблаговременных профилактических, организационных, инженерных и иных действиях, которые помогают заранее предсказать аварийную ситуацию, просчитать риски и снизить ее последствия в случае вероятного возникновения. Их разделяют на следующие:

  • мониторинг потенциально опасной внутренней производственной и внешней природной среды, состояния технологических линий и объектов;
  • прогнозирование развития аварийной ситуации в случае ее возникновения на основании полученных сведений;
  • превентивные меры для снижения риска аварийной ситуации.

Превентивные меры осуществляются по следующим направлениям:

  • выделение событий, которые могут привести к ЧС техногенного характера;
  • снижение вероятности возникновения таких событий.

Для снижения вероятности возникновения событий, приводящих к аварийной ситуации, осуществляются следующие мероприятия:

  • районирование территории (сейсмологическое, гидрологическое, геологическое, климатическое, экономическое), на основании результатов которого определяется рациональное размещение объектов хозяйственного комплекса, в частности рационального выбора площадок для потенциально опасных объектов;
  • предупреждения (снижение интенсивности) некоторых опасных производственных процессов и внешних природных явлений;
  • профилактики аварийной ситуации (диагностика оборудования, планово-предупредительные ремонты, техническое обслуживание);
  • профилактика терроризма и преступности на предприятии;
  • проведение мероприятий по повышению квалификации персонала;
  • снижение уровня нагрузок на технологические и транспортные линии объектов;
  • снижение уязвимости объектов к воздействию негативных (поражающих) факторов опасных природных и техногенных явлений;
  • обеспечение устойчивости зданий к нагрузкам
  • обеспечение эффективности (надежности) систем безопасности, препятствующих перерастанию экстремальных ситуаций в аварию.

Справка: Федеральная служба судебных приставов может приостановить деятельность предприятия на срок до 60 суток в случае выявления обстоятельств, которые могут привести к техногенной чрезвычайной ситуации, для их устранения.

Урок 18 Последствия радиационных аварий

Последствия радиационных аварий

Для аварий на радиационно опасных объектах характерен выброс радиоактивных продуктов в окружающую среду. Он приводит к радиационному загрязнению воздуха, воды, почвы и, следовательно, к облучению персонала объекта, а в некоторых случаях и населения (см. схему 11). При этом из атомных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Может произойти разлив жидкости, приводящий к радиоактивному загрязнению местности, водоемов.

Радиоактивные вещества имеют специфические свойства:

— у них нет запаха, цвета, вкусовых качеств или других внешних признаков, из-за чего только приборы могут указать на заражение людей, животных, местности, воды, воздуха, предметов домашнего обихода, транспортных средств, продуктов питания; — они способны вызывать поражение не только при непосредственном соприкосновении, но и на расстоянии (до сотен метров) от источника загрязнения; — поражающие свойства радиоактивных веществ не могут быть уничтожены химическим и/или каким-либо другим способом, так как их радиоактивный распад не зависит от внешних факторов, а определяется периодом полураспада данного вещества.

Период полураспада — это время, в течение которого распадается половина всех атомов радиоактивного вещества. Период полураспада различных радиоактивных веществ колеблется в широких временных пределах.

При радиационной аварии происходит загрязнение продуктов питания, воды и водоемов, что влечет за собой возникновение у людей и животных различных форм лучевой болезни, тяжелых отравлений, инфекционных заболеваний.

В результате аварийного выброса радиоактивных веществ в атмосферу возможны виды радиационного воздействия на людей и животных, приведеиные на рисунке.

Особенности радиоактивного загрязнения (заражения) местности

Радиоактивное загрязнение при аварии на предприятии (объекте) ядерной энергетики имеет несколько особенностей:

— радиоактивные продукты легко проникают внутрь помещений, так большая часть их находится в парообразном или аэрозольном состоянии; — наибольшую опасность представляет внутреннее облучение, обусловленное попаданием радиоактивных веществ внутрь организма; — при большой продолжительности радиоактивного выброса, когда направление ветра может многократно меняться, возникает вероятность радиоактивного загрязнения местности практически во все стороны от источника аварии.

Рассмотрим характерные особенности радиоактивного загрязнения местности при авариях на АЭС в отличие от радиоактивного загрязнения местности при ядерных взрывах.

При наземном ядерном взрыве в его облако вовлекаются десятки тысяч тонн грунта. Радиоактивные частицы смешиваются с минеральной пылью, оплавляются и оседают на местности.

Воздух загрязняется незначительно. Формирование следа радиоактивного облака завершается за несколько часов. За это время метеорологические условия, как правило, резко не изменяются, и след облака имеет конкретные геометрические размеры и очертания. В этом случае главную опасность для людей, оказавшихся на следе радиоактивного облака, представляет внешнее облучение (90—95% общей дозы облучения). Доза внутреннего облучения незначительна. Она обусловлена попаданием внутрь организма радиоактивных веществ через органы дыхания и с продуктами питания.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Их выброс в атмосферу может продолжаться от нескольких суток до нескольких недель. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется как внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, так и внутренним облучением в результате вдыхания радионуклидов из облака выброса. В последующем в течение многих лет вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды. Суммарную дозу облучения, прогнозируемую на 50 ближайших после аварии лет, в этом случае принято рассчитывать следующим образом: 15% —внешнее облучение, 85% — внутреннее облучение.

Действия населения при аварии с выбросом радиоактивных веществ

Радиационная авария

– это нарушение правил безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при котором произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящей к облучению населения и загрязнению окружающей среды.

Основными поражающими факторами таких аварий являются радиационное воздействие и радиоактивное загрязнение. Аварии могут сопровождаться взрывами и пожарами.

Радиационное воздействие на человека заключается в нарушении жизненных функций различных органов (главным образом органов кроветворения, нервной системы, желудочно-кишечного тракта) и развитии лучевой болезни под влиянием ионизирующих излучений.

4.

АВАРИЯ В ЧОК-РИВЕРСКОЙ ЛАБОРАТОРИИ — 1952 Г
Чок-Риверская Лаборатория (CRL) — это место крупных исследований и разработок для поддержки и развития ядерных технологий, в частности, реакторной техники CANDU. 12 декабря 1952 года разрушение стержня затвора реактора, в сочетании с несколькими ошибками оператора, привело к большому выходу мощности более чем в два раза выше номинальной мощности реактора в реакторе NRX AECL. Серия взрывов водородного газа швырнула четырехтонный купол газохранилища на четыре фута по воздуху, где он застрял в надстройке. Тысячи курий продуктов деления были выброшены в атмосферу, и миллион галлонов радиоактивно загрязненной воды пришлось откачивать из подвала и «удалять» в мелкие окопы недалеко от реки Оттава. Ядро реактора NRX нельзя обеззараживать; его нужно было похоронить как радиоактивные отходы. Молодой Джимми Картер, позже президент США, а затем инженер-ядерщик в ВМС США, был среди сотен канадских и американских военнослужащих, которым было приказано участвовать в очистке NRX после аварии.

Характеристики особо опасных АХОВ

Наиболее вредными считают следующие сильнодействующие ядовитые вещества:

  • NH3 (аммиак) представляет собой газ без цвета, имеющий запах нашатыря. Его в основном применяют для производства жидких удобрений и нитрата, а также соды. Кроме этого данное вещество могут ещё использовать при окрашивании тканей и серебрении зеркал. Оно раздражает преимущественно дыхательные пути, а также слизистые оболочки и кожные покровы.
  • Cl2 (хлор) имеет вид желтоватого газа с ярко выраженным резковатым запахом. При испарении он всегда образует туман белого цвета с водяными парами. Это аварийно химически опасное вещество применяют для обработки воды и широко используют в текстильной промышленности. Данный газ сильно раздражает дыхательные пути человека и даже может вызвать отёк лёгких.
  • HCN (цианистый водород, или синильная кислота) – это жидкость, не имеющая цвета и обладающая горьким миндальным запахом. Её часто используют при производстве пластмассы, органического стекла и искусственного волокна. Это вещество блокирует внутриклеточные ферменты, которые содержат железо, и таким образом вызывает удушье всех тканей человека.
  • SO2 (сернистый ангидрид) – это бесцветный газ, обладающий резким запахом и сладковатым привкусом. Данное аварийно химически опасное вещество, вступая в контакт с водой, может образовывать сернистую кислоту. Его часто используют в качестве отбеливателя либо в пищевой промышленности как консервант. Этот газ поражает дыхательные пути и может вызывать помутнение роговицы глаза.
  • H2S (сероводород) представляет собой сторонний продукт, получающийся при переработке различных нефтепродуктов, а также при коксовании угля. Данный газ не имеет цвета и обладает запахом тухлого яйца. Его ещё применяют при производстве серы. Он поражает в основном лёгкие, и отравление им может привести к их отёку.
  • CO (окись углерода) – это газ, не имеющий цвета и запаха. При возгорании имеет вид синего пламени. Отравление данным веществом называют угаром.
  • C4H4O2 (диоксин) представляет собой соединение, содержащее два бензольных кольца, в которых по два атома водорода замещено на хлор. Этот сильнейший яд вырабатывается на предприятиях, где производят топливо, а также на целлюлозно-бумажных фабриках и электролизных комбинатах. Отравление им приводит в основном к летальному исходу.
  • C6H6 (бензол) имеет вид бесцветной жидкости с острым запахом. Она образуется в результате коксования угля. Её используют чаще всего для синтеза пестицидов, а также при производстве многих фармацевтических препаратов и в качестве растворителя различных жиров и лаков. Отравление данным веществом может привести к потере сознания и судорогам.

Типы электростанций и последствия их работы

Классификация этих энергетических комплексов осуществляется в зависимости от источников, которые они используют. Так, существуют тепловые электростанции. Они работают на органическом топливе (природном газе, угле, нефти). В процессе производства энергии образуются продукты горения, которые неблагоприятно действуют на природу, загрязняя ее. На гидроэлектростанциях используется вода. Их работа не сказывается отрицательно на воздухе. Но плотины, построенные для их обеспечения сырьем, перекрывают водные потоки, пагубно действуя на фауну и флору местности. Ветровые электростанции используют воздушные потоки. Но на них тоже может произойти катастрофа. Например, может упасть ветрогенератор, нанеся ущерб окружающим конструкциям.

Действия населения в случае сигнала оповещения

В случае аварии с выбросами радиоактивных веществ при отсутствии в сообщении инструкции необходимо защитить себя от облучения. Для этого следует по возможности как можно быстрее воспользоваться табельными средствами (противогазом, респиратором), а при их отсутствии – платком, повязкой, шарфом и так далее. Необходимо укрыться в ближайшем здании или собственной квартире. Верхнюю одежду и обувь следует поместить в пленку или пакет, закрыть окна и двери, а также вентиляционные отверстия. Обязательно нужно включить телевизор, радио и ожидать поступления сообщений о дальнейших действиях. В помещении следует находиться вдали от окон. В обязательном порядке проводятся мероприятия по герметизации квартиры. Для этого подручными средствами заделываются все щели. Открытые продукты следует поместить в пакеты или пленку, положить в холодильник или шкаф с дверцами. В квартире должен быть запас воды. Ее набирают в емкости с плотно закручивающимися крышками. При получении рекомендаций по СМИ необходимо провести профилактику препаратом йода (йодистым калием, например). Если их нет, можно использовать 5% его раствор (3-5 капель на 250 мл для взрослых и 1-2 на 100 мл для детей). Через 6-7 часов прием следует повторить. При этом нужно помнить, что препараты йода не рекомендованы беременным. Все продукты, выдерживающие воду, при приеме пищи и во время приготовления следует мыть.

Трагедия в бухте Чажма

Аварийная К-431 в бухте Павловского

wikipedia.org Еще одна советская атомная подводная лодка К-31. Десятое августа 1985 года. Бухта Чажма в Японском море. Происходит перезарядка активных зон реакторов. Элементы корпусов подводной лодки над реакторным отсеком вырезаны, вместо них установлено специальное сооружение, называющееся перегрузочным домиком.

Офицеры, выполнившие десятки подобных перезарядок, допускают легкие отступления от жестких требований безопасности. В частности, выяснилось, что реактор не выдерживает допустимого гидравлического давления и «течет». Вместо того чтобы доложить об этом выше по инстанциям и прекратить работы, специалисты решили самостоятельно устранить повреждения.

Крышку реактора сняли и начали медленно поднимать краном. Была рассчитана высота, на которую могла быть поднята крышка, чтобы цепная реакция не началась. Однако вместе с крышкой начали подниматься поглотители, а работавшие на реакторе специалисты этого не видели. Ситуация стала критически опасной. Крышка висела на кране, который находился на плавучей мастерской, и любое ее колебание могло привести к началу цепной реакции. И тут в бухту вошел на высокой скорости торпедный катер. Волна, разошедшаяся от него, качнула плавмастерскую, крышку выдернуло вместе со всей системой поглотителей, цепная реакция началась.

На месте сгорел-испарился перегрузочный домик со всей командой из десяти человек — определить уровень радиации смогли в итоге только по обручальному кольцу, которое осталось от одного из погибших офицеров (составлял он 90 тысяч рентген в час). Бухта со всеми кораблями, прилегающий к ней поселок Шкотово-22 и завод — все оказалось в зоне ядерного поражения. К тому же дул ветер.

Порванный борт вскоре заваривала аварийная команда — в ней были только офицеры. Вообще, в зоне поражения не было ни одного матроса, только офицеры. Группы сменяли друг друга, после работ отправляясь в госпиталь.

Завод оцепили, в поселке отключили связь, жителей о радиационном загрязнении уведомлять не стали. Лодку перевели в другую бухту через две недели. Ликвидация последствий загрязнения шла и в зоне аварии, и в зоне, где выпали радиоактивные осадки.

Всего повышенное облучение получили 290 ликвидаторов. У 39 из них была зафиксирована лучевая реакция. У семерых лучевая болезнь. Обстановка в зоне аварии нормализовалась примерно через полгода.

На войне нельзя обойтись без потерь

  • На войне нельзя обойтись без потерь
  • Хронология событий Работа над ядерным вооружением в СССР
  • Аварии в Челябинской области 1948 год
  • 1949 год
  • 1957 год
  • 1967 год

Катастрофы в Европе
Красное Сормово
Ошибка американских операторов
Чернобыль
Беда в Японии
Пустошь

  • Можно ли было избежать аварии

Почему были допущены аварии на АЭС
Последствия для планеты

В 1944 году войска СССР и военные союзников победным маршем шли по Европе, одерживая победу за победой над армией «сверхлюдей». Невосполнимыми были потери противника и на других фронтах.

На фоне этих успехов противников фашизма учёные США, соблюдая режим строжайшей секретности, работали над созданием оружия, применение которого должно было потрясти мир картиной невероятной разрушительной силы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector