Что такое датчик тока acs712 созданный на эффекте холла

Программа для вольтметра

Программа на языке C++ приведена на рисунке 2.

Рис. 2. Исходный код программы.

Для управления ЖК-индикатором решено было использовать порты с D2 по D7 платы ARDUINO UNO. В принципе, можно и другие порты, но я вот так, решил использовать именно эти.

Для того чтобы индикатор взаимодействовал с ARDUINO UNO нужно в программу загрузить подпрограмму для его управления. Такие подпрограммы называются «библиотеками», и в программном комплекте для ARDUINO UNO есть много разных «библиотек». Для работы с ЖК-индикатором на основе HD44780 нужна библиотека LiquidCrystal. Поэтому программа (таблица 1) начинается с загрузки этой библиотеки:

Эта строка дает команду загрузить в ARDUINO UNO данную библиотеку. Затем, нужно назначить порты ARDUINO UNO, которые будут работать с ЖК-индикатором. Я выбрал порты с D2 по D7. Можно выбрать другие. Эти порты назначены строкой:

LiquidCrystal led(2, 3, 4, 5, 6, 7);

После чего, программа переходит собственно к работе вольтметра. Для измерения напряжения решено было использовать аналоговые входы А1 и А2. Эти входы заданы в строках:

int analogInput=1;

int analogInput1=2;

Для чтения данных с аналоговых портов используется функция analogRead. Чтение данных с аналоговых портов происходит в строках:

vout=analogRead(analogInput);

voutl=analogRead(analoglnput1);

Затем, производится вычисление фактического напряжения с учетом коэффициента деления делителя входного напряжения:

volt=vout*5.0/1024.0/0.048 ;

volt1=vout1*5.0/1024.0/0.048;

В этих строках число 5.0 — это напряжение на выходе стабилизатора платы ARDUINO UNO. В идеале должно быть 5V, но для точной работы вольтметра это напряжение нужно предварительно измерить. Подключите источник питания и измерьте достаточно точным вольтметром напряжение +5V на разъеме POWER платы. Что будет, то и вводите в эти строки вместо 5.0, например, если будет 4.85V, строки будут выглядеть так:

volt=vout*4.85/1024.0/0.048;

volt1=vout1*4.85/1024.0/0.048;

На следующем этапе нужно будет измерить фактические сопротивления резисторов R1-R4 и определить коэффициенты К (указаны 0.048) для этих строк по формулам:

К1 = R3 / (R1+R3) и К2 = R4 / (R2+R4)

Допустим, К1 = 0.046, а К2 = 0.051, так и пишем:

volt=vout*4.85/1024.0/0.046 ;

volt1=vout1*4.85/1024.0/0.051;

Таким образом, в текст программы нужно внести изменения соответственно фактическому напряжению на выходе 5-воль-тового стабилизатора платы ARDUINO UNO и согласно фактическим коэффициентам деления резистивных делителей. После этого прибор будет работать точно и никакого налаживания или калибровки не потребует.

Изменив коэффициенты деления резистивных делителей (и, соответственно, коэффициенты «К») можно сделать другие пределы измерения, и совсем не обязательно одинаковые для обоих входов.

Каравкин В. РК-2017-01.

Литература:

  1. Каравкин В. — Ёлочная мигалка на ARDUINO как средство от боязни микроконтроллеров. РК-11-2016.
  2. Каравкин В. — Частотомер на ARDUINO. РК-12-2016.

Схемы соединения и скетчи

Сами тензодатчики подключаются по схеме в зависимости от их типа — полу-, или мостового, а также общего количества чувствительных элементов. На плате HX711 размещены два аналоговых входа, соответственно к АЦП можно присоединить или четыре половинчатых детектора или два полных.

Соединение с единичным датчиком полумоста

Соответственно скетч его калибрующий и опрашивающий: // Указываем соответствующие контакты, к которым присоединен сенсор #define pSCK 2 #define pDT 3 #include «HX711.h» HX711 HX711ctl; // создаем объект float CF = -0.6; // поправочный коэффициент подобранный к конкретным датчикам float UNC,GR; // Унции и граммы void setup() { Serial.begin(57600); HX711ctl.begin(pDT, pSCK); // инит детектора HX711ctl.set_scale(); // — // HX711ctl.tare(); // Очистка показаний детектора HX711ctl.set_scale(CF); // Настройка поправочного значения } void loop() { UNC = HX711ctl.get_units(10); // Делаем 10 проб и получаем усредненное значение GR = UNC * 0.035274; // Конвертация унция → грамм Serial.print(«Volume: «); Serial.print(GR); Serial.println(» Gr»); }

Соединение с четырьмя полумостовыми тензодатчиками

По причине того, что в цепях с участием HX711 важным фактором служит только физическое соединение чувствительных элементов, никакого отличия от предыдущего скетча по получению показаний — нет.

Соединение с одним мостовым тензодатчиком

Опять же, и для представленной схемы скетч изменений не требует. Есть только у некоторых специалистов замечание, по вычислению и установке CF — переменной поправки: void setCF() { HX711ctl.set_scale(); // — // HX711ctl.tare(); // Очистка показаний датчика const WOS = 200; // вес платформы float CFM,CF=0,CR=0.035274; for (int j=0;j < 10; j++){ CFM = HX711ctl.get_units(1) / (WOS / CR); CF += CFM; } CF=CF/10; HX711ctl.set_scale(CF); }

Соответственно изменится и остальной код: // Указываем соответствующие линии, к которым присоединен детектор #define pSCK 2 #define pDT 3 #include «HX711.h» HX711 HX711ctl; float UNC,GR; // Унции и граммы void setup() { Serial.begin(57600); HX711ctl.begin(pDT, pSCK); // инит детектора HX711ctl.set_scale(); // — // HX711ctl.tare(); // Очистка показаний датчика setCF(); // Настройка поправочного значения ← измененная часть } void loop() { UNC = HX711ctl.get_units(10); // Делаем 10 проб и получаем усредненное значение GR = UNC * 0.035274; // Конвертация унция → грамм Serial.print(«Volume: «); Serial.print(GR); Serial.println(» Gr»); }

Программная часть

Для работы с подобным датчиком и подобным обвесом есть библиотека EmonLib. Скачать можно тут:https://github.com/openenergymonitor/EmonLib

Готового
примера из библиотеки достаточно, чтобы понять, как оно работает:

Функция emon1.current(0, 80) – имеет два параметра. Первый параметр, номер аналогового порта, куда подключен датчик, второй – калибровочный коэффициент, который лично я подбирал экспериментальным путем. В моем случае (нагрузочный резистор 22 Ом, напряжение питания 3,3В, коэффициент составил 80). Калибровать лучше всего сторонним амперметром переменного тока.

Работа схемы

Схема рассматриваемого нами цифрового вольтметра на основе платы Arduino представлена на следующем рисунке.

В схеме необходимо сделать следующие соединения:

  1. Соедините высоковольтную часть трансформатора (220V) с источником напряжения, а его низковольтную часть (12v) — с делителем напряжения в схеме.
  2. Соедините резистор 10 кОм последовательно с резистором 4,7 кОм. Убедитесь в том, что на вход схемы напряжение будет поступать с именно с резистора 4,7 кОм (не перепутайте резисторы).
  3. Соедините диод как показано на схеме.
  4. Подсоедините конденсатор и стабилитрон как показано на схеме.
  5. Соедините отрицательный вывод диода с контактом A0 платы Arduino.

Примечание: обязательно соедините землю Arduino с точкой, показанной на рисунке, иначе схема не будет работать.

Зачем нужен делитель напряжения

Поскольку мы используем трансформатор 220/12 это значит что на его низковольтной стороне будет напряжение 12 В, которое не подходит для питания платы Arduino (не подходит в качестве ее входного напряжения). Поэтому мы и используем делитель напряжения чтобы получить подходящее напряжение для платы Arduino.

Зачем нужны диод и конденсатор

Поскольку плата Arduino не может работать с отрицательными значениями напряжения мы должны удалить отрицательные циклы напряжения из поступающего напряжения переменного тока, чтобы остались только положительные циклы. Поэтому для выпрямления поступающего входного напряжения и используется диод.

Но напряжение на выходе диода не будет “гладким” (ровным) и будет содержать большие пульсации, которые нежелательно (в нашем случае) подавать на аналоговый вход платы Arduino. Поэтому в схему и включен конденсатор чтобы сглаживать пульсации напряжения на выходе диода.

Назначение стабилитрона

Можно повредить плату Arduino если на ее контакт подать напряжение более 5 В. Поэтому, чтобы напряжение на контакте Arduino не превысило 5 В, в схеме и используется стабилитрон.

Практические ниши применения

Несмотря на определенные ограничения сенсора, ниши в которых он действительно пригодится весьма широки. Посудите сами — в сущности, потребление электроэнергии возникает единовременно с моментами включения устройств, находящихся на линии. А сам сенсор именно в это время начинает регистрировать показания. То есть датчик тока с Arduino можно использовать не только, как конечный измеряющий прибор, но и в качестве контролирующей части, определяющей активацию какого-либо оборудования. Самый простой пример — обычная лампа. Совместив микроконтроллер с датчиком света и тока можно добиться того, что будет не только производиться активация освещения в темный период времени, но и станет отправляться сигнал пользователю, если источник видимого излучения выйдет из строя. Или, другим примером может стать контроль физического состояния насоса, двигателя, а также любого электрического прибора, потребляющего энергию.

Опять же. Применяя Arduino одновременно с ACS712, как наиболее распространенным датчиком тока платформы, можно использовать микроконтроллер именно в роли детектирующего прибора, который в зависимости от определенного времени производит замер потребления конечной сети. Или как очень «умный» мультиметр, с возможностью построения On-line графиков на дополнительно соединенном к аппарату экране или внешнем компьютере.

Характеристики датчика тока Arduino

ACS713 и ACS712 состоит из линейного датчика на базе эффекта Холла с медным проводником. Ток создает магнитное поле в медном проводнике, которое улавливается датчиком и преобразуется в напряжение. Сила магнитного поля линейно зависит от силы тока. Точность обеспечивается микросхемой на модуле с заводскими настройками. Работает цифровой датчик с постоянным и переменным током.

Принцип работы датчика тока ACS712 с элементом Холла

Технические характеристики ACS712

  • Тип интерфейса: цифровой;
  • Напряжение: постоянное и переменное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 11 мА;
  • Измерение силы тока: от 5 до 30 Ампер;
  • Чувствительность: от 66 мВ/А до 185 мВ/А;
  • Температура эксплуатации: от -40°C до +85°C;
  • Размер платы модуля: 31 мм на 13 мм.

Датчик TA12-100 Arduino работает на другом принципе. Модуль измеряет напряжение, падающее на транзисторе в 200 Ом, который находится на выходе трансформатора. Датчик TA12-100 преобразует напряжение на резисторе в аналоговый сигнал, применяя закон Ома (I = E / R). Коэффициент трансформатора составляет 1000:1 и, чтобы получить значение тока, следует полученные данные умножить на 1000.

Датчик тока TA12-100 для платы Ардуино

Технические характеристики TA12-100

  • Тип интерфейса: аналоговый;
  • Напряжение: постоянное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 5 мА;
  • Измерение силы тока: до 5 Ампер;
  • Чувствительность: не известна;
  • Температура эксплуатации: от -55°C до +85°C;
  • Размер платы модуля: 30 мм на 24 мм.

Исходный код программы

Полный код программы приведен в конце статьи, здесь же сначала рассмотрим его наиболее важные фрагменты.

В программе мы должны сообщить плате Arduino, к каким ее контактам подключен ЖК дисплей. Контакт RS ЖК дисплея подключен к цифровому контакту 2 платы Arduino, а контакт Enable – к цифровому контакту 3 платы Arduino. Контакты данных ЖК дисплея (D4-D7) подключены к цифровым контактам 4,5,6,7 платы Arduino.

Arduino

LiquidCrystal lcd(2,3,4,5,6,7); //rs,e,d4,d5,d6,d7

1 LiquidCrystallcd(2,3,4,5,6,7);//rs,e,d4,d5,d6,d7

Затем в программе мы должны инициализировать необходимые нам переменные.

Arduino

int Vin=5; //напряжение на контакте 5V платы arduino
float Vout=0; //напряжение на контакте A0 платы arduino
float R1=3300; //значение сопротивления известного резистора
float R2=0; // значение сопротивления неизвестного резистора

1
2
3
4

intVin=5;//напряжение на контакте 5V платы arduino

floatVout=;//напряжение на контакте A0 платы arduino

floatR1=3300;//значение сопротивления известного резистора

floatR2=;// значение сопротивления неизвестного резистора

Далее в программе мы должны инициализировать наш ЖК дисплей.

Arduino

lcd.begin(16,2);

1 lcd.begin(16,2);

Затем мы должны считать значение на выходе АЦП контакта A0.

Далее значение с выхода АЦП (оно в диапазоне от 0 до 1023) конвертируется в значение напряжения.

Arduino

buffer=a2d_data*Vin;
Vout=(buffer)/1024.0;

1
2

buffer=a2d_data*Vin;

Vout=(buffer)1024.0;

Далее в коде программе исходя из найденного значения напряжения мы рассчитываем значение сопротивления R2.

Arduino

buffer=Vout/(Vin-Vout);
R2=R1*buffer;

1
2

buffer=Vout(Vin-Vout);

R2=R1*buffer;

Далее найденное значение сопротивления резистора R2 выводится на экран ЖК дисплея.

Arduino

lcd.setCursor(4,0);
lcd.print(«ohm meter»);
lcd.setCursor(0,1);
lcd.print(«R (ohm) = «);
lcd.print(R2);

1
2
3
4
5

lcd.setCursor(4,);

lcd.print(«ohm meter»);

lcd.setCursor(,1);

lcd.print(«R (ohm) = «);

lcd.print(R2);

Если вас заинтересовал данный проект, то вы можете следующие похожие проекты на нашем сайте:
— цифровой вольтметр на Arduino;
— цифровой амперметр на Arduino;
— частотомер на Arduino;
— измеритель емкости на Arduino.

Далее приведен полный код программы.

Arduino

#include<LiquidCrystal.h>
LiquidCrystal lcd(2,3,4,5,6,7); //rs,e,d4,d5,d6,d7
int Vin=5; //напряжение на контакте 5V платы arduino
float Vout=0; //напряжение на контакте A0 платы arduino
float R1=3300; //значение сопротивления известного резистора
float R2=0; // значение сопротивления неизвестного резистора
int a2d_data=0;
float buffer=0;
void setup()
{
lcd.begin(16,2);
}
void loop()
{
a2d_data=analogRead(A0);
if(a2d_data)
{
buffer=a2d_data*Vin;
Vout=(buffer)/1024.0;
buffer=Vout/(Vin-Vout);
R2=R1*buffer;
lcd.setCursor(4,0);
lcd.print(«ohm meter»);
lcd.setCursor(0,1);
lcd.print(«R (ohm) = «);
lcd.print(R2);

delay(1000);
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include<LiquidCrystal.h>

LiquidCrystallcd(2,3,4,5,6,7);//rs,e,d4,d5,d6,d7

intVin=5;//напряжение на контакте 5V платы arduino

floatVout=;//напряжение на контакте A0 платы arduino

floatR1=3300;//значение сопротивления известного резистора

floatR2=;// значение сопротивления неизвестного резистора

inta2d_data=;

floatbuffer=;

voidsetup()

{

lcd.begin(16,2);

}

voidloop()

{

a2d_data=analogRead(A0);

if(a2d_data)

{

buffer=a2d_data*Vin;

Vout=(buffer)1024.0;

buffer=Vout(Vin-Vout);

R2=R1*buffer;

lcd.setCursor(4,);

lcd.print(«ohm meter»);

lcd.setCursor(,1);

lcd.print(«R (ohm) = «);

lcd.print(R2);

delay(1000);

}

}

4Описание датчика тока,напряжения и мощности INA219

Датчик INA219 – цифровой датчик тока, напряжения и мощности. Он позволяет измерять напряжения от 0 до 26 вольт и ток от 0 до 3,2 ампер. Питается датчик напряжением от 3 до 5,5 В. Существуют модули, полностью готовые к подключению к Arduino. Один из таких модулей GY-219:

Модуль GY-219 с датчиком тока INA219: назначение выводов и частей

Датчик INA219 выполняется в двух разновидностях: A и B. Последняя отличается повышенной точностью и меньшей погрешностью. На фото ниже как раз модификация INA219B.

Модуль GY-219 с датчиком тока INA219

Датчик INA219 имеет 12-разрядный АЦП, соответственно при максимуме измерений ±3,2 А получается разрешающая способность 0,8 мА. Однако можно настроить датчик таким образом, чтобы уменьшить диапазон измеряемой силы тока до ±400 мА; при этом разрешающая способность датчика увеличится до 0,1 мА. При этом можно откалибровать датчик, записав калибровачные данные в специальный регистр. Измеренные данные силы тока, напряжения и можности хранятся в трёх соответствующих регистрах. Кстати, датчик INA219 позволяет осуществлять аппаратную фильтрацию по 128 отсчётам, если измеряемый ток имеет сильные наводки.

Для конфигурирования датчика INA219 и для считывания показаний с него используется последовательный интерфейс I2C. Причём адрес на шине можно задать с помощью перемычек A0 и A1 на модуле. Допустимые адреса:

  • 0x40 (без перемычек);
  • 0x41 (с перемычкой A0);
  • 0x44 (с перемычкой A1);
  • 0x45 (установлены обе перемычки).

Соответственно, на одной шине IIC можно иметь до 4-х таких датчиков, подключённых одновременно.

Принцип работы датчика тока ACS712

Прежде чем приступить к рассмотрению проекта остановимся кратко на принципах работы датчика тока ACS712 поскольку он является ключевым элементом нашего проекта. Измерение силы тока, а особенно силы переменного тока, всегда является достаточно сложной задачей вследствие наличия большого количества шумов, вызванных проблемами с изоляцией и т.д. Но с использованием датчика тока ACS712 эта задача значительно упрощается.

Этот датчик построен на использовании эффекта Холла, открытым ученым Эдвином Холлом. В соответствии с данным эффектом когда проводник с током помещается в магнитное поле на его концах формируется напряжение, перпендикулярное направлению протекания тока и направлению действующего магнитного поля. Измерять это напряжение мы будем в милливольтах и будем называть его напряжением Холла. Величина этого напряжения будет пропорциональна величине протекающего через проводник тока.

Основным достоинством датчика тока ACS712 является то, что он может измерять как переменный (AC), так и постоянный ток (DC) и он также обеспечивает изоляцию между нагрузкой и измерительным устройством (в нашем случае это будет плата Arduino. Как показано на следующем рисунке, датчик тока ACS712 имеет три контакта – Vcc (питающее напряжение), Vout (выход) и Ground (земля).

Слева на рисунке показаны два контакта, которые подсоединяются к тому месту, где необходимо измерить ток. Датчик работает от напряжения +5V – его необходимо подать на контакт Vcc датчика. Контакт Ground датчика необходимо подсоединить к земле схемы. Если сила измеряемого тока равна нулю, то на выходном контакте датчика напряжение равно 2500mV, если протекающий ток положителен, то напряжение на выходе датчика будет больше 2500mV, если отрицателен – то меньше 2500mV.

Для считывания напряжения с этого контакта мы будем использовать один из аналоговых входов Arduino – на выходе его АЦП (аналогово-цифровой преобразователь) будет значение 512 когда на входе контакта будет напряжение 2500mV – то есть когда ток не протекает. Это значение будет уменьшаться когда ток будет протекать в обратном (отрицательном) направлении, и увеличиваться когда ток будет протекать в прямом (положительном) направлении. В следующей таблице представлены примеры значений на выходе АЦП аналогового контакта Arduino в зависимости от величины протекающего через датчик тока.

Эти значения были рассчитаны на основе даташита на датчик ACS712. Вы их также можете рассчитать по следующим формулам:

Vout Voltage(mV) = (ADC Value/ 1023)*5000Ток через проводник (A) = (Vout(mv)-2500)/185

2Подключение датчика тока ACS712 к Arduino

Как мы помним из курса школьной физики, для измерения тока необходимо пропустить ток через измерительный прибор, помещённый в разрыв между источником питания и нагрузкой. Соответственно, схема подключения датчика проста:

Вывод датчика ACS712 Назначение
VCC Питание, 5 В
GND Земля
OUT Аналоговый выход датчика, напряжение на котором линейно зависит от протекающего через датчик тока
IP+ Вывод 1 для подачи измеряемого тока
IP- Вывод 2 для подачи измеряемого тока

Выводы IP+ и IP- как раз и есть тот разрыв цепи, через который нужно пропустить интересующий ток. Если перепутать полярность, то измерения будут с обратным знаком.

Кстати, эта особенность – измерять ток как с положительным, так и отрицательным знаком, позволяет использовать датчик ACS712 для измерений переменного тока.

Таким образом, для подключения датчика ACS712 к плате Arduino используются 3 провода:

Схема подключения датчика тока ACS712 к Arduino

Выход сенсора VOUT подключим к любому аналоговому выводу Arduino, например, A0. В качестве нагрузки будем использовать двигатель постоянного тока.

Модуль с датчиком тока ACS712 подключён Arduino, нагрузка – двигатель постоянного тока

Либо вместо нагрузки можно использовать мощную лампу накаливания. Либо любую другую нагрузку.

Модуль с датчиком тока ACS712 подключён Arduino, нагрузка – 10 Вт лампа накаливания

Питать нагрузку будем от лабораторного источника тока, на котором можно менять напряжение и ток.

introduction to acs712 current sensor

Acs712 is hall effect based current sensor. It can measure both direct current and alternating current. It is a linear type sensor. This is very a famous integrated circuit designed by Allegro .  It has features of noise cancellation, very high response time. Output error is about 1.5 percent but it can tackled with some intelligent programming and multiplying measured value with standard error of sensor. If you give dc current to its input , it will give proportional dc voltage at the output of sensor and if you give ac current at the input of acs712, it will give you proportional ac voltage at the output. Proportional term depends on the output sensitivity of the sensor. I will explain proportional sensitivity of acs712 sensor in later part of this article.

Характеристики датчика тока Arduino

ACS713 и ACS712 состоит из линейного датчика на базе эффекта Холла с медным проводником. Ток создает магнитное поле в медном проводнике, которое улавливается датчиком и преобразуется в напряжение. Сила магнитного поля линейно зависит от силы тока. Точность обеспечивается микросхемой на модуле с заводскими настройками. Работает цифровой датчик с постоянным и переменным током.


Принцип работы датчика тока ACS712 с элементом Холла

Технические характеристики ACS712

  • Тип интерфейса: цифровой;
  • Напряжение: постоянное и переменное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 11 мА;
  • Измерение силы тока: от 5 до 30 Ампер;
  • Чувствительность: от 66 мВ/А до 185 мВ/А;
  • Температура эксплуатации: от -40°C до +85°C;
  • Размер платы модуля: 31 мм на 13 мм.

Датчик TA12-100 Arduino работает на другом принципе. Модуль измеряет напряжение, падающее на транзисторе в 200 Ом, который находится на выходе трансформатора. Датчик TA12-100 преобразует напряжение на резисторе в аналоговый сигнал, применяя закон Ома (I = E / R). Коэффициент трансформатора составляет 1000:1 и, чтобы получить значение тока, следует полученные данные умножить на 1000.


Датчик тока TA12-100 для платы Ардуино

Технические характеристики TA12-100

  • Тип интерфейса: аналоговый;
  • Напряжение: постоянное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 5 мА;
  • Измерение силы тока: до 5 Ампер;
  • Чувствительность: не известна;
  • Температура эксплуатации: от -55°C до +85°C;
  • Размер платы модуля: 30 мм на 24 мм.

Немного о принципах работы реле

В этом проекте мы будем управлять включением/выключением электрической лампочки с помощью сенсорного датчика, платы Arduino и реле. Принцип работы реле различного типа показан на следующем рисунке.

NO на этом рисунке обозначает нормально разомкнутые контакты, а NC – нормально замкнутые контакты. L1 и L2 – это выводы катушки реле. Когда на катушку реле не подано напряжения реле находится в выключенном состоянии – якорь (POLE) подключен к нормально замкнутому контакту. При подаче питания на катушку якорь реле подключается к нормально разомкнутому контакту.

Очень важно определить рабочие параметры реле перед тем как включать его в схему. Реле различаются, в частности, по рабочему напряжению, прикладываемому к катушке реле (контакты L1 и L2)

Некоторые реле имеют рабочее напряжение 12 В, некоторые – 6 В, а некоторые – 5 В. Для нашего проекта мы использовали реле с управляющим (рабочим) напряжением 5 В с возможностью коммутации напряжения 250 В с током до 6 А.

Технические характеристики

Рассмотрим характеристики платы ACS712 более подробно, естественно с разделением их в зависимости от возможностей различных моделей:

  • Питание — 5В;
  • потребляемый ток — 0,11А;
  • сопротивление по шинам — до 1,2 мОм;
  • вид измеряемой характеристики — постоянный или переменный ток;
  • температурный режим работы — от –40 до +85°С;
  • дополнительные индикаторы — присутствует светодиод поступления тока на питание устройства;
  • размеры (в среднем) — 31 x 13 мм;
  • критичная сила тока, приводящая к пробою устройства — 50А.

Чувствительность:

Модель мВ/А
ACS712 5A 185
ACS712 20A 100
ACS712 30A 66
ACS713 20A 185
ACS713 30A 133

Внутренняя электронная схема сенсора:

Подключение датчика привязки по Z к плате PLC4x-2

Всем привет! Подключаю на ось Z кнопку нуля, электрического действия.

Плата PLC4x-2, модель.

Подключается как механический концевик, но в Mach номер пина нужно записать в Probe. Тогда это будет работать как датчик нуля.

Одна голова хорошо, а две лучше. Русская народная чпу поговорка.

Подключается как механический концевик, но в Mach номер пина нужно записать в Probe. Тогда это будет работать как датчик нуля.

на пин «probe» и gnd

на пин «probe» и gnd

На Вашей плате надо воткнуться куда-то на «XP25, XP26, XP27, XP28, XP29, XP30 (клемный разъем) – подключение внешних датчиков и кнопки E-STOP, оптовходы.» Но я там нумерацию пинов не понимаю. Придётся номер определять через мач автоматически.

Когда нажмёте последнюю кнопку AutoSet, нужно будет проводки пробника замкнуть ненадолго, и в окошке мача появится номер пина.

Там (на плате) нет специального контакта Probe, используйте любой, получится.

Правильно ли я вообще выбрал подключение в порт оси Z?

Одна голова хорошо, а две лучше. Русская народная чпу поговорка.

Я бы так попробовал:

Но может быть я не прав.

Одна голова хорошо, а две лучше. Русская народная чпу поговорка.

Таким образом, как я понимаю, нельзя брать для этих вводов общие со станком землю и питание 12В.

Ну или я что то не так понимаю )))

Просто слово «кнопка» подразумевает под собой изолированное со всех сторон устройство с пимпочкой, из из него выползают два провода, а при нажатии на пимпочку эти два провода там внутри замыкаются между собой. Что Вы там на фрезу вешаете только Вам и известно.

Как понимаю, раз это оптопара, то мне нужно зажечь лампочку на транзисторе, чтобы фотодиод сработал. А для этого нужно питание

Просто слово «кнопка» подразумевает под собой изолированное со всех сторон устройство с пимпочкой, из из него выползают два провода, а при нажатии на пимпочку эти два провода там внутри замыкаются между собой. Что Вы там на фрезу вешаете только Вам и известно.

Ну собственно да, не кнопка у меня, а простая железячка круглой формы, с проводом, которая, благодаря тому что она железная, может замыкать цепь при нажатии на неё металлической фрезой. Соответственно, и фреза должна быть участником этой цепи, потому на фрезу и вешаю второй провод.

Просто слово «кнопка» подразумевает под собой изолированное со всех сторон устройство с пимпочкой, из из него выползают два провода, а при нажатии на пимпочку эти два провода там внутри замыкаются между собой. Что Вы там на фрезу вешаете только Вам и известно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector