Система полива растений на ардуино уно

Содержание:

Обзор датчика уровня влажности почвы

Подобные датчики подключаются достаточно просто. Два из трех коннекторов — это питание (VCC) и земля (GND). При использовании датчик желательно периодически отключать от источника питания, чтобы избежать возможного окисления. Третий выход — сигнал (sig), с которого мы и будем снимать показания. Два контакта датчика работают по принципу переменного резистора — чем больше влаги в почве, тем лучше контакты проводят электричество, падает сопротивление, сигнал на контакте SIG растет. Аналоговые значения могут отличаться в зависимости от напряжения питания и разрешающей способности ваших аналоговых пинов микроконтроллера.

Для подключения датчика можно использовать несколько вариантов. Коннектор, приведенный на рисунке ниже:

Второй вариант более гибкий:

Ну и конечно можно напрямую запаять контакты на датчик.

Если вы планируете использовать датчик за пределами квартиры, стоит дополнительно задуматься о защите контактов от грязи и прямого попадания солнечных лучей. Возможно, стоит подумать о корпусе или нанесении защитного покрытия непосредственно на контакты датчика уровня влажности и проводники (смотрите на рисунок ниже).

Датчик уровня влажности почвы с нанесенным защитным покрытием на контактах и изолированными проводниками для подключения:

Как работает датчик почвы FC-28?

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Примеры работы для BBC micro:bit

В качестве мозга для считывания показаний с датчика рассмотрим платформы из семейства BBC micro:bit.

Так как электроды датчика подвержены , рассмотрим два варианта работы с сенсором:

Постоянное питание

Датчик постоянно подключен к источнику питания. Подробности читайте в разделе про .

Схема устройства

Подключите датчик влажности почвы к платформе BBC micro:bit.

Датчик влажности почвы BBC micro:bit
VCC 3V
GND GND
SIG P0

Для коммуникации понадобятся провода с «крокодилами».

Для надёжной фиксации электрических связей, возьмите плату расширения micro:bit Breakout, которая устанавливается на краевой разъём BBC micro:bit. Для коммуникации понадобится и соединительные провода «мама-папа».

Код для JavaScript

Прошейте платформу кодом приведённым ниже.

microbit-moisture-sensor-example-microbit-simple-power-read-data-javascript.js

Код для Python

Прошейте платформу кодом приведённым ниже.

microbit-moisture-sensor-example-microbit-simple-power-read-data-python.py

Схема устройства

Подключите датчик влажности почвы к платформе BBC micro:bit.

Датчик влажности почвы BBC micro:bit
VCC P2
GND GND
SIG P0

Для коммуникации понадобятся провода с «крокодилами».

Для надёжной фиксации электрических связей, возьмите плату расширения micro:bit Breakout, которая устанавливается на краевой разъём BBC micro:bit. Для коммуникации понадобится и соединительные провода «мама-папа».

Код для JavaScript

Прошейте платформу кодом приведённым ниже.

microbit-moisture-sensor-example-microbit-control-power-read-data-javascript.js

Код для Python

Прошейте платформу кодом приведённым ниже.

microbit-moisture-sensor-example-microbit-control-power-read-data-python.py

Применение датчиков измерения влажности воздуха

В промышленных условиях, для определения относительной влажности почв, материалов или помещений чаще используются гигрометры, измеряющие относительную влажность. Они оснащены встроенными преобразователями сигналов и легко интегрируются в соответствующую измерительную систему. Также эти приборы могут иметь встроенный датчик температуры, чтобы проводить комплексный контроль микроклимата и устанавливать реальную связь между уровнями температуры и влажности.

Для измерения относительной влажности воздуха наиболее доступны несколько типов датчиков: психрометрические, аспирационные, емкостные и резистивные. Рассмотрим более детально каждый вид датчика.

Датчики емкостного и резистивного типа часто используют в офисных системах климат-контроля, где показатели влажности могут варьироваться от 30 до 70%.

Для агропромышленных комплексов (теплиц, грибоводческих хозяйств, овощехранилищах) такие модели не подойдут, так как в условиях повышенной влажности и при возможном выпадении конденсата дают сбой и могут показывать значения с погрешностью до 6%. В этом случае рекомендуется использование психрометрических датчиков.

Если замеры производятся в зонах с воздушным потоком, то стоит применять аспирационный датчик, то есть психрометрический, дополненный вентилятором. За счет работы электровентилятора на мокром термометре создается нормированный воздушный поток. При измерении высокой относительной влажности воздуха такой прибор дает погрешность 1%, не более.

В целом область использования датчиков влажности воздуха очень широка и включает в себя:

  • Поддержание микроклимата в заданных пределах на производстве, оборудованном чувствительными к влажности электронными приборами;
  • Контроль за показателями влажности в офисных помещениях, в быту;
  • В сфере ЖКХ – в котельных и на водоочистных станциях позволяют не допустить образование конденсата;
  • Периодический контроль помогает предотвратить появление грибка, плесени на стенах здания или в складе.

Компоненты и их описания

Arduino Uno

Arduino взаимодействует через датчики с окружающей средой и обрабатывает поступившую информацию в соответствии с заложенной в неё программой. Подробнее с платой Ардуино Уно можно ознакомиться здесь.

Ардуино Уно

Датчик влажности почвы

Измерение влажности почвы на базе Arduino производится с помощью датчика влажности. Датчик имеет два контакта. Через эти контакты при погружении их в грунт протекает ток. Величина тока зависит от сопротивления грунта. Поскольку вода является хорошим проводником тока, наличие влаги в почве сильно влияет на показатель сопротивления. Это значит, чем больше влажность почвы, тем меньше она оказывает сопротивление току.

Датчик влажности почвы

Этот датчик может выполнять свою работу в цифровом и аналоговом режимах. В нашем проекте используется датчик в цифровом режиме.
На модуле датчика есть потенциометр. С помощью этого потенциометра устанавливается пороговое значение. Также на модуле установлен компаратор. Компаратор сравнивает данные выхода датчика с пороговым значением и после этого даёт нам выходной сигнал через цифровой вывод. Когда значение датчика больше чем пороговое, цифровой выход передаёт 5 вольт (HIGH), земля сухая. В противном случае, когда данные датчика будут меньше чем пороговые, на цифровой вывод передаётся 0 вольт (LOW), земля влажная.

Этим потенциометром необходимо отрегулировать степень сухости почвы, когда как вы считаете нужно начать полив.

Фоторезистор

Фоторезистор (LDR) — это светочувствительное устройство, которое используются для определения интенсивности освещения. Значение сопротивления LDR зависит от освещённости. Чем больше света, тем меньше сопротивление. Совместно с резистором, фоторезистор образует делитель напряжения. Резистор в нашем случае взяли 10кОм.

Делитель напряжения

Подключив выход делителя Uin к аналоговому входу Ардуино, мы сможем считывать напряжения на выходе делителя. Напряжение на выходе будет меняться в зависимости от сопротивления фоторезистора. Минимальное напряжение соответствует темноте, максимальное – максимальной освещённости.

В этом проекте полив начинается в соответствии с пороговым значением напряжения. В утренние часы, когда считается целесообразным начать полив, напряжение на выходе делителя равно 400. Примем это значение как пороговое. Так если напряжения на делителе меньше или равно 400, это означает, что сейчас ночь и насос должен быть выключен.
Меняя пороговое значение можно настроить период работы автополива.

Релейный модуль

Реле представляет собой переключатель с электромеханическим или электрическим приводом.

Релейный модуль

Привод реле приводится в действие небольшим напряжением, например, 5 вольт от микроконтроллера, при этом замыкается или размыкается цепь высокого напряжения.

Схема реле

В этом проекте используется 12 вольтовый водяной насос. Arduino Uno не может управлять напрямую насосом, поскольку максимальное напряжение на выводах Ардуино 5 вольт. Здесь нам приходит на помощь релейный модуль.

Релейный модуль имеет два типа контактов: нормально замкнутые и нормально разомкнутые контакты. Нормально замкнутые без управляющего напряжения замкнуты, при подаче напряжения размыкаются. Соответственно нормально разомкнутые без напряжения разомкнуты, при подаче управляющего напряжения замыкаются. В проекте используются нормально разомкнутые контакты.

Водяной насос

В проекте используем 12-и вольтовый погружной насос с 18-ваттным двигателем. Он может поднимать воду до 1,7 метра.

Водяной насос

Этот насос можно эксплуатировать только тогда, когда он полностью погружен в воду. Это налагает некие обязательства по контролю уровня воды в ёмкости. Если водяной насос будет работать без воды, он просто-напросто сгорит.

Макетная плата

Макетная плата представляет собой соединительную плату, используемую для создания прототипов проектов электроники, без пайки.

Элементы платы

Измерительные электроды

Датчик построен на основе транзисторного усилителя тока. Для измерения влажности почвы на датчике расположены два электрода, которые для проведения измерений необходимо воткнуть в почву. Электроды подключены в цепь между коллектором (точка SP) и базой (точка SN) встроенного транзистора на плате MMBT2222ALT1G.

При изменении влажности почвы, меняется сопротивление между базой и коллектором, к которому подключен положительный полюс источника питания. Соответственно меняется и протекающий ток от коллектора через эмиттер на землю. В результате изменяется и выходное аналоговое напряжение сенсора (точка OUT). Подробности найдёте на .

Troyka-контакты

Датчик подключается к управляющей электронике через три провода.

  • Сигнальный (S) — выходной сигнал сенсора. Напряжение на выходе датчика прямо пропорционально уровню измеренной электропроводности: чем выше влажность почвы, тем выше уровень сигнала на выходе датчика и соответственно наоборот. Максимальное выходное значения 75% от напряжения питания. Подключите к аналоговому пину микроконтроллера.
  • Питание (V) — соедините с рабочим напряжением микроконтроллера.
  • Земля (G) — соедините с землёй микроконтроллера.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Хорошо зарекомендовали себя клапаны производства американской компании Hunter. Для разных целей используются клапаны c проходным диаметром 1, 1.5, и 2 дюйма с наружной или внутренней резьбой.

Существует множество управляемых кранов и других производителей.

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Примеры:

Считывание показаний с датчика:

Показания датчика считываются вызовом функции analogRead(номер_вывода);

Тип подключения 1:

Тип подключения 2: датчик запитан от выводов A0 и A1.

Так как датчик является инверсным, для удобства чтения данных можно воспользоваться встоенной функцией map(), которая в следующем скетче преобразует и инвертирует «сырые» показания датчка в диапазон от до 100: 

Описание функции map():

Синтаксис: map(ПЕРЕМЕННАЯ, НАЧАЛЬНОЕ НИЖНЕЕ ЗНАЧЕНИЕ, НАЧАЛЬНОЕ ВЕРХНЕЕ ЗНАЧЕНИЕ, КОНЕЧНОЕ НИЖНЕЕ ЗНАЧЕНИЕ, КОНЕЧНОЕ ВЕРХНЕЕ ЗНАЧЕНИЕ);

  • ПЕРЕМЕННАЯ — переменная или функция, возвращающая значение int;
  • НАЧАЛЬНОЕ НИЖНЕЕ ЗНАЧЕНИЕ — начальное значение входного диапазона для конвертирования. В данном случае оно больше чем верхнее для инвертирования результата
  • НАЧАЛЬНОЕ ВЕРХНЕЕ ЗНАЧЕНИЕ — конечное значение входного диапазона. В данном случае оно меньше нижнего для инвертирования результата.
  • КОНЕЧНОЕ НИЖНЕЕ ЗНАЧЕНИЕ — начальное значение выходного диапазона
  • КОНЕЧНОЕ ВЕРХНЕЕ ЗНАЧЕНИЕ — конечное значение выходного диапазона

Автоматический полив

После организации считывания данных с датчика уровня влажности и их отображения, проект можно развить дальше, организовав систему автоматического полива.

Датчик уровня влажности в составе автоматической системы полива на основании Arduino:

Для автоматизации полива нам понадобятся дополнительные детали: возможно, шкивы, зубчатые шестерни, двигатель, муфта, транзисторы, резисторы. Список зависит от вашего проекта. Ну все, что может попасться под руку в быту. Более детально один из примеров показан ниже:

Это один из множества вариантов установки двигателя для системы автоматического полива. Колесо можно установить непосредственно в воде. В таком случае при его быстром вращении, вода будет подаваться к растению. В общем, можете проявить фантазию.

Схема подключения двигателя постоянного тока (статья с более подробным примером подключения двигателя к Arduino) на примере копии Arduino от SparkFun приведена ниже:

Ниже приведен скетч для Arduino (по сути он такой же как и приведенный выше с небольшим дополнением для управления двигателем):

// В скетче считываются данные с датчика и отображается уровень влажности почвы

// если почва сухая, начинает работать двигатель

// Для работы с дисплеем используется библиотека softwareserial library

#include &ltSoftwareSerial.h&gt

// Подключите пин для обмена данными с использованием LCD дисплея по серийному протоколу RX к цифровому пину 2 Arduino

SoftwareSerial mySerial(3,2); // pin 2 = TX, pin 3 = RX (unused)

// Управляем двигателем с помощью пина 9.

// Этот пин должен обязательно поддерживать ШИМ-модуляцию.

const int motorPin = 9;

// Тут мы настраиваем некоторые константы.

// Настройка констант зависит от условий внешней среды, в которой используется датчик

int thresholdUp = 400;

int thresholdDown = 250;

// Настраиваем пин A0 на Arduino для работы с датчиком:

int sensorPin = A0;

void setup(){

pinMode(motorPin, OUTPUT); // устанавливаем пин, к которому подключен двигатель в качестве выхода

mySerial.begin(9600); // устанавливаем скорость обмена данными на 9600 baud

delay(500); // ждем пока дисплей прогрузится

}

void loop(){

// Здесь мы объявляем строку, в которой хранятся данные для отображения

// на жидкокристаллическом дисплее. Значения будут изменяться

// в зависимости от уровня влажности почвы

String DisplayWords;

// В переменной sensorValue хранится аналоговое значение датчика с пина А0

int sensorValue;

sensorValue = analogRead(sensorPin);

// перемещение курсора к началу первой строки LCD дисплея: mySerial.write(254);

mySerial.write(128);

// очистка дисплея:

mySerial.write(» «);

mySerial.write(» «);

// перемещение курсора к началу первой строки LCD дисплея: mySerial.write(254);

mySerial.write(128);

// запись необходимой информации на дисплей:

mySerial.write(«Water Level: «);

mySerial.print(sensorValue); //Использование.print вместо .write для значений

// Теперь мы проведем проверку уровня влажности по сравнению с заданными нами предварительно числовыми константами.

// Если значение меньше thresholdDown, отображаем слова:

// «Dry, Water it!»

if (sensorValue

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

DisplayWords = «Dry, Water it!»;

mySerial.print(DisplayWords);

// запуск двигателя на небольших оборотах (0 – остановка, 255 – максимальная скорость):

analogWrite(motorPin, 75);

// Если значение не ниже thresholdDown надо провести проверку, не будет

// ли оно больше нашего thresholdUp и, если, больше,

// отобразить надпись «Wet, Leave it!»:

} else if (sensorValue >= thresholdUp){

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

DisplayWords = «Wet, Leave it!»;

mySerial.print(DisplayWords);

// выключение двигателя (0 – остановка, 255 – максимальная скорость):

analogWrite(motorPin, 0);

// Если полученное значение в диапазоне между минимальным и максимальным

// и почва была раньше влажной, а теперь сохнет,

// отображаем надпись «Dry, Water it!» (то есть, когда мы

// приближаемся к thresholdDown). Если почва была сухой, а теперь

//быстро увлажняется, отображаем слова «Wet, Leave it!» (то есть, когда мы

// приближаемся к thresholdUp):

} else {

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

mySerial.print(DisplayWords);

}

delay(500); //Задержка в пол секунды между считываниями

}

Удачи вам в реализации автоматического полива ваших растений!

Схема подключения датчика измерения влажности воздуха, его настройка и установка

В большинстве случаев такие датчики монтируются на твердую поверхность. Корпус может закрепляться на стене винтами (он твердый, прочный и выполнен из огнеупорного пластика). Внутри корпуса гигрометра расположен клеммник с контактами, который используется для подключения (задействуется схема, предоставленная производителем).

Подключение производится кабелем через кабельный ввод, при этом соответствующую гайку обязательно затягивают до упора, чтобы сохранить герметичность корпуса (в большинстве моделей он соответствует классу защиты от внешних воздействий IP65). Также можно использовать экранированный кабель, если предполагается, что устройство будет работать в зоне с высоким уровнем электромагнитных помех. Настройка и калибровка производятся после подключения в «рабочих» условиях.

В компании «Измеркон» можно приобрести датчики влажности, преобразователи температуры и влажности с релейными выходами, с цифровым интерфейсом, с внешними зондами, а также WEB-датчики. Есть модели гигрометров с подключением по Wi-Fi, способные передавать данные через интернет.

Датчик влажности — T1110

Выход: 4-20 мА

Преобразователи температуры и влажности H3020

Выходной сигнал: 2х Реле

Точность измерения относительной влажности: 0 до 100 %RH

Диапазон рабочей температуры: -30 до +105°C

Преобразователи температуры и влажности H3021P

Выходной сигнал: 2х Реле

Точность измерения относительной влажности: 0 до 100 %RH

Диапазон рабочей температуры: -30 до +80°C

Публикации

Все публикации

Видео

Все видео

Связанные продукты

T1110

Датчик влажности с выходом 4 -20 mA.

Датчики H3020 и H3023

Преобразователи температуры и влажности с релейными выходами.

H3021P

Преобразователь температуры и влажности с двумя релейными выходами и внешним зондом, предназначенным для измерения в сре…

  • https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-vlazhnosti/
  • https://prodatchik.ru/vidy/datchik-vlazhnosti/
  • https://izmerkon.ru/podderzhka/publikaczii/datchik-izmereniya-vlajnosti-vozduha.html

Подробнее про датчик

Датчик для измерения влажности почвы выполнен в виде вилки с двумя электродами, которыми погружается в грунт на расстояние до 45 мм. При подключении питания на электродах создаётся напряжение. Если почва сухая, её сопротивление велико и через датчик между электродами течёт слабый ток. Если земля влажная — её сопротивление становится меньше, а ток датчика между электродами соответственно увеличивается. По итоговому аналоговому сигналу можно судить о степени увлажнения почвы.

Выходной сигнал

Максимальное напряжение на выходе примерно 75% от напряжения питания модуля , т.е. сигнальный диапазон датчика равен:

  • 0–4 В при питании 5 В
  • 0–2,3 В при питании 3,3 В

Факторы погрешности показаний

На показания датчика также влияют следующие факторы:

  • Степень погружения датчика в почву.
  • Тип почвы, её химические и физические свойства.
  • Наличие и количество примесей в воде.

Защита от коррозии

Электроды датчика подвержены двум видам коррозии: пассивной и электрической.

Для борьбы с пассивным разрушением, когда датчик выключен, электроды сенсора покрыты золотом. А для борьбы с электрической коррозией, рекомендуем запитывать только в момент снятия показаний. Отсюда сенсор имеет два варианта подключения у управляющей плате: постоянное питание и управляемое питание.

  • Постоянное питание Подойдет, если вы тестируете сенсор или собираетесь использовать датчик недолгое время.

    • Плюсы: занимает только один пин микроконтроллера.
    • Минусы: датчик подвержен быстрой электрической коррозии.
  • Управляемое питание. Отлично подойдет, если вы собираетесь использовать датчик длительное время.

    • Плюсы: значительно продлит срок службы сенсора.
    • Минусы: занимает два пина микроконтроллера.

Популярные модели

Датчик влажности почвы – востребованное устройство как в профессиональной, так и в хозяйственной сфере. Стоит рассмотреть рейтинг лучших моделей подобных устройств.

МГ-44

Прибор российского производителя, оснащенный емкостным модулем. Основное назначение – измерение показателей влажности грунта. В основном предназначен для профессионального использования в сфере гидрологии и других областях. Принцип работы прибора – отражение электромагнитного потока, который идет от объекта измерения. Показатели влажности отражаются на дисплее. Для достижения точных результатов рекомендуется проводить до 99 калибровок. Максимальная погрешность устройства составляет 1%.

Преимущества:

  • удобство эксплуатации;
  • долгий срок службы;
  • 99 режимов.

TR di Turoni & c. Snc 46908

Устройство для измерения влажности почвы профессионалами. У прибора нет аналогов на российском рынке. Отличительная особенность датчика – быстрый замер влажности почвы и анализ полученных параметров. В комплекте предусмотрены щупы и специальный короб для транспортировки. Преимущества:

  • долгий срок эксплуатации;
  • удобная переносная сумка;
  • отображение результатов на дисплее.

Товар брендовый, поэтому пользуется популярностью среди представителей инженерно-изыскательской сферы.

TDR 100 Soil

Портативный датчик, который подходит только для профессионального использования. Измеряет влажность почвы за несколько секунд, предоставляя точные результаты. Оборудование компактное, его легко транспортировать, что дает возможность проводить замеры даже в труднодоступных местах.

MC-7828 SOIL

Прибор подходит как для профессионального, так и для хозяйственного использования. Производитель – компания в Тайване, которая занимается выпуском качественного измерительного оборудования. Преимущества устройства:

  • высокое качество сборки;
  • долгий срок эксплуатации;
  • понятный интерфейс.

Замеры проводятся с точностью, погрешность которой составляет не больше 1%.

Weihuameter TK100

Прибор с большим количеством функций, способный работать с разными материалами. Подходит для профессионального использования. Измерение влажности почвы осуществляется посредством использования игольчатого датчика. Погрешность измерений не превышает половины процента.

Преимущества устройства:

  • высокое качество сборки;
  • бюджетная стоимость;
  • долгий срок службы.

AMTAST AMF038

Изделие подходит для использования как профессионалами, так и фермерами на участках. Бюджетное устройство выполнено из прочного пластика, способного выдержать даже внушительные механические нагрузки. Эксплуатация датчика возможна и в суровых условиях.

Модель используют для определения показателей влажности:

  • почвы;
  • сена;
  • деревянных конструкций.

OOTDTY влагомер

Прибор, собранный китайским производителем, быстро и точно определит влажность почвы. Конструкцией устройства предусмотрен специальный электрод, который погружают в землю для получения показателей. Прибором можно пользоваться как в профессиональной сфере, так и в саду или на загородном участке. Показатель влажности, который способен определить прибор, лежит в пределах 30-90%.

ADA ZHT 70

Бюджетный вариант для проверки почвы сада или огорода. Корпус устройства выполнен в стандартном стиле, который использует компания. Широкий дисплей, удобный кейс и высокая точность измерений – преимущества прибора.

ETP306

Прибор, обеспечивающий тщательный контроль за влажностью почвы. Небольшая цена устройства дает возможность приобретения датчика для использования в домашних условиях. Преимущества модели:

  • минимальная погрешность измерений;
  • много функций;
  • долгий срок службы.

АПЦ-1

Анализатор почвы, который позволяет измерить влажность в нескольких диапазонах одновременно. Вес устройства небольшой, что обеспечивает комфортную переноску и удобство использования. Подходит для использования в хозяйственной сфере. Результаты не самые точные, но их достаточно для определения требуемых показателей. Преимущества АПЦ-1:

  • удобное управление;
  • подсветка дисплея;
  • компактные размеры.

Three-way meter

Простое устройство с широким экраном, которое пригодится садоводам и озеленителям. Универсальное устройство способно определить следующие показатели:

  • влажность почвы;
  • кислотность;
  • освещение.

Главный плюс оборудования – отсутствие аккумуляторной или обычной батареи. Их заменяет установленная в конструкцию солнечная панель. К дополнительным плюсам относят высокую точность измерений и компактные размеры. Измерение влажности поможет определить характеристики грунта и организовать качественное озеленение участка или выращивание различных культур.

Описание датчика влажности почвы V1.2

Принципиальная схема самого датчика приведена ниже.

Здесь мы видим генератор с фиксированной частотой, который построен на микросхеме таймера NE555. Прямоугольная волна с генератора подается на датчик, который является, по сути, конденсатором.

Однако для прямоугольного сигнала этот конденсатор имеет определенное реактивное сопротивление. Чем больше влажность почвы, тем выше емкость датчика. Следовательно, существует меньшее реактивное сопротивление для прямоугольной волны, что снижает напряжение на сигнальной линии.

Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…

Подробнее

Напряжение на выводе аналогового сигнала датчика можно измерить с помощью аналогового вывода на Arduino, который отображает влажность почвы.

Что ещё можно сделать?

  1. Несмотря на золочение, контакты сенсора влажности со временем корродируют. Быстрее всего корродирование происходит при подключённом питании. Срок жизни сенсора можно значительно увеличить, если подключить питание к нему через силовой ключ. Когда надо получить данные — включаем питание сенсора, снимаем показания и тут же выключаем питание.
  2. Если оставить наш ирригатор работающим на длительный срок без присмотра, вода в резервуаре может закончиться. При работе без воды помпа быстро выходит из строя. Решением проблемы может быть автоматическое определение опустошения резервуара. Сенсор подбирается исходя из типа резервуара. Если он не глубок, то подойдёт ещё один датчик влажности. Когда же высоты его не хватает, можно воспользоваться УЗ-дальномером, сделать поплавок с датчиком наклона или просто опустить на дно два провода.
  3. Устройство, работающее от батареек, будет значительно безопасней питающегося от сети. Идеальным вариантом было бы питание ирригатора от батареек. Но Arduino Uno, как известно, даже в режиме сна потребляет более 10 мА. Выходом может являться использование Arduino Mini, способный в режиме сна снижать потребляемый ток до сотен мкА.
  4. Существует много правил полива домашних растений, как, например: не стоит поливать зимой вечером. Можно добавить сенсоров света или часы реального времени и скорректировать программу так, чтобы она старалась поливать в нужное время.

А ещё можно собрать автополив на Slot Shield — инструкция по сборке и прошивка.

Как это работает

Выходное напряжение датчика варьируется в зависимости от количества воды, содержащейся в почве.

  • Если почва влажна – выходное напряжение уменьшается
  • Если почва суха – выходное напряжение увеличивается

На выходе будет цифровой сигнал (D0) – LOW или HIGH, в зависимости от содержания воды в почве. То есть, если влажность почвы превысит определенное пороговое значение, модуль вернет значение LOW, а если нет – HIGH. Пороговое значение для цифрового сигнала настраивается при помощи потенциометра.

На выходе может быть и аналоговый сигнал, что позволяет измерять влажность значениями в диапазоне от «0» до «1023».

Заключение

Датчик уровня влажности на Arduino — доступный и удобный способ организовать мониторинг почвы домашней растительности или состояния земли на даче, в саду или огороде. Такая система поможет владельцу всегда знать, нуждаются ли растения в поливе, и не дать им погибнуть от высыхания, пригодна она и для других задач с использованием измерения влажности. А предлагаемые платформой возможности автоматизации позволяют создавать собственные сценарии и проектировать полностью автоматические системы.

Неустойчивость к коррозии оправдывается дешевизной устройства и легкостью замены элементов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector