Все об оптоволоконных кабелях: варианты, конструкции, разъемы

Одномодовый оптический кабель: конструкция и применение

Одномодовый оптический кабель представляет собой наиболее совершенный волоконно-оптический проводник. Конструкция одномода предполагает прохождение только одной определенной волны, что, в свою очередь, обеспечивает отсутствие нежелательных явлений в виде межмодовой дисперсии и снижения качества сигнала на выходе. Как итог, отсутствие явления дисперсии делает одномодовые оптические кабели наиболее производительными. Режим передачи данных в формате прохождения единовременно только одной волны позволяет передавать сигнал на многокилометровые расстояния, сохраняя первоначальное качество.

Однако, на сегодняшний день электроника для передачи данных посредством подобного кабеля значительно дороже оборудования для многомодовых систем. Соответственно основным недостатком одномодового типа волокна является именно высокая стоимость приёмников-преобразователей.

Используют же данный тип кабеля в сложных телекоммуникационных системах, а для локальных компьютерных сетей более подходящим и рентабельным считается применение многомодового кабеля.

Классификация по типу нагрузки

По этому типу оптоволокно можно разделить на 4 большие группы:

  1. Магистральная сеть. Для прокладки сетей на значительные расстояния используется одномодовый кабель со смещенной дисперсией. Его также можно прокладывать в грунте различного типа.
  2. Городские кабели. Для организации сети внутри населенных пунктов используют градиентные волокна, они способны поддерживать устойчивую связь на нескольких волновых длинах. Протяженность такой сети может достигать 100 км.
  3. Объектовые. Используются для прокладки оптоволоконного кабелявнутри сети предприятий или домов, активно применяются для организации телефонных сетей.
  4. Монтажные ВОЛС. Используются для настройки и связи оборудования в ограниченном пространстве.

Маркировка оптических кабелей связи по предыдущим ТУ

Пример маркировки для кабеля ОМЗКГМ: ОМЗКГМ-10-01-0,22-16-(7,0)

Маркировка:

  • ОМЗКГМ: О — Оптический кабель, М — Магистральный, 3 — Зоновый, К — Канализация, Г — Грунт, М — Многомодульной конструкции.
  • ОМЗКГЦ: О — Оптический кабель, М — Магистральный, 3 — Зоновый, К — Канализация, Г — Грунт, Ц — Одномодульной конструкции с центральной трубкой.
  • ОКСТМН: ОК — Оптический кабель, СТ — Стальная гофрированная броня, М — Многомодульной конструкции, Н — Негорючая оболочка.
  • ОКСТЦ: ОК — Оптический кабель, СТ — Стальная гофрированная броня, Ц — Одномодульной конструкции с центральной трубкой.
  • ОККТМ: ОК — Оптический кабель, К — Канализация, Т — Трубы пластмассовые, М — Многомодульной конструкции.
  • ОККТЦ: ОК — Оптический кабель, К — Канализация, Т — Трубы пластмассовые, Ц — Одномодульной конструкции с центральной трубкой.
  • ОКСНМ: ОК — Оптический кабель, С — Самонесущий, Н — Неметаллический, М — Многомодульной конструкции.

Диаметр модового поля, сердцевины:

  • 10 — для одномодового оптического волокна (ОВ) с несмещенной дисперсией
  • 10А — для одномодового оптического волокна (ОВ) с низким пиком воды и расширенной рабочей полосой длин волн
  • 9,5 — для одномодового оптического волокна (ОВ) с ненулевой смещенной дисперсией
  • 50 — для многомодового оптического волокна (ОВ)
  • 62,5 — для многомодового оптического волокна (ОВ)

Номер разработки, для кабелей с индексом М и МН:

  • LS — центральный силовой элемент (ЦСЭ) из стеклопластика
  • HF — из стального троса
  • HF — из стальной проволоки

Коэффициент затухания:

  • 0,22 — 0,22 дБ/км на длине волны 1550 нм
  • 0,35 — 0,35 дБ/км на длине волны 1310 нм
  • 0,70 — 0,70 дБ/км на длине волны 1300 нм

Принцип работы волоконно-оптического кабеля

Принцип работы волоконно-оптического кабеля базируется на передаче модулированного светового потока, инициируемого лазером или специальным светодиодом в составе оптического трансивера. Электрические сигналы преобразуются в свет на одном конце ВОК, передаются по оптоволокну и принимаются на другом конце кабеля. На приеме свет конвертируется в исходные электрические сигналы.

Разработчики оптического волокна нашли гениальное решение, разделив его на сердцевину и оболочку с разными показателями преломления света. Лазерное излучение проходит по сердцевине, отражаясь от оболочки, что способствует минимальным потерям мощности даже на протяженных магистралях. Физические параметры полученного световода легко рассчитываются, позволяя изготавливать оптоволоконные кабели с заданными характеристиками, предназначенные для решения конкретных задач.

Дальность распространения световых импульсов ограничивается затуханием и дисперсией. Причинами затухания в оптическом кабеле являются внутренние отражения, рассеяние и поглощение. Дисперсия приводит к искажению исходной формы сигналов, а именно к увеличению их длительности.

Современные ВОК имеют параметры, предоставляющие возможность передавать сигналы на расстояние до 100 км. Учитывая эти ограничения, на магистральных трактах через каждые 80 — 100 км устанавливаются регенерационные пункты, в которых полностью восстанавливается исходный сигнал. Таким образом, можно строить линии связи в несколько десятков тысяч километров.

Типы волоконно-оптического кабеля

Волоконно-оптические кабели разделяются на разные типы, что важно понимать при выборе ВОК для индивидуального проекта. Зная типовые особенности оптоволоконного кабеля, можно без труда подобрать наиболее подходящий вариант

9.2. Соединительные розетки и адаптеры

Соединительные розетки (рисунки 9.4-9.6) обеспечивают физический контакт соединяемых коннекторов. Материал корпуса розетки ST и FC – никелированная латунь, SC – пластик. Розетки для многомодовых применений содержат бронзовый разрезной центратор, розетки для одномодовых применений – керамический центратор.

Рисунок 9.4. Розетка ST

Рисунок 9.5. Розетка FC

Рисунок 9.6. Розетка SC

Вносимые потери на соединение стандартных шнуров: одномодовые – 0,2 ¸ 0,3 дБ, многомодовые – 0,05 ¸ 0,2 дБ.Соединительные розетки SC могут быть спаренными. Переходные розетки (рисунок 9.7) используются для соединения шнуров различных стандартов, для сопряжения аппаратуры различных производителей.

Рисунок 9.7. Переходная розетка

Адаптеры различаются своим назначением.

Адаптеры для обнаженного волокна – это устройства для оперативного временного оконцевания одномодового или многомодового волокна в буферном покрытии диаметром 900 мкм. Адаптеры используются при ремонте и оптических измерениях. Адаптеры для обнаженного волокна состоят из коннектора определенного типа (FC,ST,SC) и специализированного зажимного устройства, которое может удерживать волокно в буферном покрытии. Типовые потери 0,4 ¸ 0,8 дБ.

Адаптеры типа FM используются в измерительной аппаратуре. Они подключаются к оптическому входу прибора и защищают приборы от риска повреждения излучателей и фотоприемников при многократных включениях. FM адаптеры представляют собой комбинацию розетки и коннектора. В коннекторную часть вклеен отрезок волокна. Типовые потери 0,4 ¸ 0,8 дБ.

Разработка оптоволоконной системы

При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель — гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.

Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы

При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:

  1. Выбор приемника и передатчика, подходящих для того типа сигнала, который необходимо передавать (аналоговый, цифровой, видеосигнал, RS-232, RS-422, RS-485 и т.д.).
  2. Определение имеющихся источников питания (переменное напряжение, постоянное напряжение и др.).
  3. Определение, при необходимости, специальных требований (например, импедансов, полосы пропускания, специальных разъемов и диаметра волокна и т.п.).
  4. Расчет общих потерь в системе (в децибелах): суммирование потерь в кабелях, в разъемных и неразъемных соединениях. Эти характеристики можно получить у производителей электронных устройств и оптоволоконных кабелей.
  5. Сравнение полученной цифры потерь с допустимым значением уровня сигнала на входе приемника. Следует подстраховаться, добавив запас как минимум в 3 дБ на всю систему.
  6. Проверка соответствия полосы пропускания системы потребностям передачи нужного типа сигнала. Если расчеты покажут, что полоса пропускания окажется недостаточной для передачи сигнала на нужное расстояние, то следует либо выбрать другой приемник и передатчик (другую длину волны), либо рассмотреть возможность использования более дорогого и качественного оптоволоконного кабеля с меньшими потерями.

Для чего нужны патч-корды?

Сфера применения оптических соединительных кабелей настолько широка, что берет начало в домашних условиях и заканчивается в крупных центрах связи. Оптические кабели этого типа используются для подключения различных устройств Ethernet: телефонов, маршрутизаторов, модемов, концентраторов и рабочих станций. Патч-кабель универсален – с его помощью можно подключить практически любое сетевое устройство, обеспечивая необходимую скорость передачи данных и практически не обращая внимания на температуру и механические нагрузки.

Классификация патч-кордов

Несмотря на простоту конструкции соединительного кабеля, не забывайте, что правильно подобранный патч-кабель – это гарантия того, что ваша система будет работать без простоев и поломок. Построение стабильно функционирующей компьютерной сети зависит от того, насколько хорошо выбраны компоненты, включая оптические соединительные кабели.

Посмотрим, чем они отличаются.

Сделано, чтобы измерить

Самая простая классификация – это длина коммутационного кабеля. Кабели доступны разной длины от 0,3 метра до 150 метров и более. На заказ может быть изготовлен патч-кабель любой длины.

По типу волокна

Различают одномодовые оптические патч-корды (SM-Single Mode) и многомодовые оптические патч-корды (MM-Multi-Mode.

Разница между ними заключается в диаметре волокна, благодаря которому передается одна или несколько мод излучения.

Патчкорды SM имеют меньший диаметр волокна, 9/125, поэтому передается только один режим обучения.

Патчкорды MM имеют волокна большого диаметра, 50/125 и 62,5 / 125, что позволяет передавать более одной моды излучения.

По типу разъема

Различают соединительные патч-корды и переходные патч-корды.

Их главное отличие состоит в том, что переходные кабели на концах имеют разные разъемы, а соединительные кабели – одинаковые.

Также есть кабели с разъемами SC, разъемами FC, разъемами ST.

Соединительный кабель SC – недорогой и один из самых популярных типов разъемов среди других. Механизм подключения довольно простой – пластиковая защелка, что одновременно является достоинством разъема такого типа, но и основным его недостатком.

Коммутационный кабель FC: Этот тип разъема отличается высокой надежностью подключения благодаря конструктивным особенностям: это тип резьбового соединения, материал корпуса, пылезащита.

Патч-кабель ST – один из самых популярных типов разъемов. Он отличается простотой и удобством подключения, удобством использования и относительно невысокой ценой. Прочная металлическая основа наконечника и конструкция с резьбой обеспечивают надежное соединение.

По типу полировки

Для уменьшения обратного отражения сигнала используются глянцевые разъемы.

Самые популярные виды – UPC, APC.

Полировка UPC (Ultra Physically Contact) – это машинная полировка. Эти разъемы пользуются хорошей репутацией и используются в системах передачи данных со скоростью более 2,5 Гбит / с.

Полировка APC (угловой физический контакт) – лучший из всех вариантов полировки. Подобный уровень полировки используется для снижения уровня энергии отраженного света (до 60 дБ)

На наличие экранирования

Существуют экранированные патч-корды FTP и неэкранированные патч-корды UTP.

В чем разница между FTP и UTP? Все очень просто:

Патч-кабель FTP представляет собой плетеный кабель с разъемами RJ45 с обеих сторон, состоящий из внешней оболочки, защитного экрана из фольги и дренажного проводника. Такая конструкция делает кабель менее гибким и громоздким.

Патч-кабель UTP – это тот же кабель, что и FTP, но без экранирующего слоя под внешней оболочкой и дренажного проводника.

Витая пара

Служит для построения компьютерных сетей. Витая пара может быть экранированной и неэкранированной.

Состоит из одной или нескольких пар проводов, перевитых попарно, что делается в целях улучшения приема и передачи сигнала. Проводники в парах изготовлены из монолитной медной проволоки толщиной 0,4—0,6 мм. Скручивание проводов снижает влияние внешних и взаимных помех на полез­ные сигналы, передаваемые по кабелю (электромагнитные помехи одинаково влияют на оба провода пары).

Также внутри кабеля встречается так называемая «разрывная нить» (обычнокапрон), которая используется для облегчения разделки внешней оболочки — при вытягивании она делает на оболочке продольный разрез, который открывает доступ к кабельному сердечнику, гарантированно не повреждая изоляцию проводников. Также разрывная нить, ввиду своей высокой прочности на разрыв, выполняет защитную функцию.

Каждый проводник заключен в изоляцию из ПВХ или пропилена. Внешняя оболочка также из ПВХ. Кабель может быть дополнительно оснащен влагонепронициаемой оболочкой из полипропилена.

В зависимости от вида кабеля возможны различные варианты защиты:

  • UTP или незащищенная, без общего экрана для пар проводов;
  • FTP, или фольгированная, с экраном из алюминиевой фольги;
  • STP, или защищенная, с общим экраном из медной сетки, к тому же каждая витая пара окружена отдельным экраном;
  • S/FTP, или фольгированная, экранированная с общим экраном из фольги, к тому же каждая пара дополнительно включена в экран.

Кроме того, витые пары разделяются на категории по количеству пар, объединенных в один кабель. Самый распространенный вид, применяемый для компьютерных сетей – это категория CAT5. Он состоит из 4 пар проводов различного цвета. Скорость передачи данных – до 1 Гб/с при использовании всех пар.

Нужно отличать электрическую изоляцию проводящих жил, которая имеется в любом кабеле, от электромагнитной изоляции. Первая состоит из непрово­дящего диэлектрического слоя — бумаги или полимера, например поливинилхлорида или полистирола. Во втором случае помимо электрической изоляции проводящие жилы помешаются также внутрь электромагнитного экрана, в каче­стве которого чаще всего применяется проводящая медная оплетка.

Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитные помехи одинаково влияют на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов.

Экранированная витая пара хорошо защищает передаваемые сигналы от внеш­них помех, а также меньше излучает электромагнитные колебания вовне, что, в свою очередь, защищает пользователей сетей от вредного для здоровья излу­чения. Наличие заземляемого экрана удорожает кабель и усложняет его про­кладку.

Для построения сетей применяются следующие разновидности кабеля:

UTP (unshielded twisted pair)

Волоконно-оптические кабели

Практическое использование оптического волокна в качестве среды передачи информации невозможно без дополнительного упрочнения и защиты. Волоконно-оптическим кабелем называется конструкция, включающая в себя одно или множество оптических волокон, а также различные защитные покрытия, несущие и упрочняющие элементы, влагозащитные материалы. По причине большого разнообразия областей применения оптоволокна производители выпускают огромное количество самых разных волоконно-оптических кабелей, отличающихся конструкцией, размерами, используемыми материалами и стоимостью (рис. 9).

Рис.9. Волоконно-оптические кабели

По назначению

Специалисты выделяют несколько типов волоконно-оптических кабелей по назначению. Встречается аналогичное разделение по способу монтажа. В принципе, это одно и тоже, что нужно учитывать при выборе кабельной продукции. Основным отличием ВОК разных типов являются их конструктивные особенности, например, параметры внешней оболочки, наличие и материал брони/силовых элементов, огнестойкость, уровень защиты от влаги.

Для монтажа внутри зданий

Волоконно-оптические кабели внутри зданий монтируются в пространстве кабельных лотков и кабель-каналов от оптических кроссов до мест подключения абонентских устройств. Наружную оболочку ВОК производят из материалов с пониженным уровнем дымовыделения, не распространяющих горение, чтобы соблюсти требования противопожарной безопасности. Броня и силовые элементы, как правило, отсутствуют. Защитные функции выполняет армирование кевларовыми нитями.

Кабели характеризуются минимальным весом, небольшим радиусом изгиба. Количество ОВ может варьироваться от 2 до 24. В случае прокладки по помещениям с наличием агрессивной, пожароопасной или взрывоопасной среды применяются специализированные оптоволоконные кабели.

Для прокладки в канализации

Для прокладки в канализации и коллекторных сооружениях востребованы волоконно-оптические кабели с броней, выдерживающие большой уровень растягивающих и раздавливающих нагрузок. Виды бронирования:

  • ленточное;
  • проволочное — с 1 или 2 повивами.

Чаще применяется ленточное бронирование, которое выполняется в виде гладкой или гофрированной трубки из стали 0,1 — 0,2 мм. Гофрированная лента эффективнее противостоит грызунам и повышает гибкость кабельного изделия. Массивная проволочная броня выбирается в случае особо сложных условий окружающей среды.

Особое внимание уделяется кабельной оболочке, изготавливаемой из негорючего полиэтилена высокой плотности, выдерживающего значительные перепады температур. Оптические модули обязательно защищаются слоем водоотталкивающего геля

Такое решение отлично зарекомендовало себя в условиях влажной атмосферы канализации и коллекторов.

Для укладки в грунт

Укладка в грунт предполагает эксплуатацию волоконно-оптического кабеля в крайне агрессивной внешней среде и риск критических механических воздействий. Нередки случаи повреждений ВОК в результате работы тяжелой строительной техники, ошибочно организованной в охранной зоне на трассе оптоволоконной линии связи.

Для минимизации ущерба оптическим волокнам применяют кабели с мощной проволочной броней, имеющей один или два повива, очень редко с ленточной броней. Такой выбор становится понятен, если учитывать, что проволочное бронирование обеспечивает:

  • максимальную нагрузку при растяжении — до 80 000 Ньютон/100 мм;
  • допустимое раздавливающее усилие — до 4 000 Ньютон/1 см.

У ленточного бронирования эти показатели гораздо ниже: 2 700 Ньютон/100 мм и 500 Ньютон/1 см соответственно.

Сохранность ОВ от проникновения влаги, особенно в период дождей, обеспечивается надежной изоляцией оптических модулей гидрофобным гелеобразным наполнителем

Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).

Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.

Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.

Оптический кабель для прокладки в грунт

Самый суровый вариант прокладки кабеля — непосредственно в грунт без какой-либо дополнительной защиты (рис 4). Оптические кабели в своей конструкции имеют броню в виде стальной оцинкованной или канатной проволоки, одного либо двух повивов, в зависимости от требуемых характеристик. Обеспечивается защита как от поперечного сдавливания, так и от растягивающих нагрузок.

Рис. 4 ОК для прокладки в грунт (проволочная броня)

Когда необходим кабель с похожими характеристиками, но при этом полностью диэлектрический, то в конструкции вместо проволоки используется броня из стеклопластиковых прутков (рис. 5).

Рис. 5 ОК для прокладки в грунт (диэлектрический)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector