Ультразвуковой уровнемер

Принцип работы ультразвукового уровнемера

Для того, чтобы измерять или контролировать уровень, ряд акустических контрольно-измерительных приборов включает в себя устройства, которые работают на основе принципа передачи звуковой энергии в форме звуковых волн. Свойствами звуковых волн, измеряющих уровень, является их способность отражаться или отталкиваться от поверхности; их время прохождения, т.е. количество времени, за которое волны доходят до поверхности, отражаются от поверхности и возвращаются; и их частота.

Транзитное время, или время прохождения звуковых волн прямо пропорционально расстоянию, которое должны пройти звуковые волны; чем больше расстояние, которое должны пройти звуковые волны, тем больше величина транзитного времени. Частотой называется количество звуковых волн в единицу времени. В контрольно-измерительной системе уровня, в которой используется ультразвук, частота, с которой воспроизводятся волн обычно предопределена тем, используется ли эта система для измерения заполненного или свободного объема. Например, ультразвуковые волны с радиочастотами (приблизительно 30 kHz) обычно распространяются в воздухе и отражаются жидкостями. Их часто используют для измерений свободного объема, которые затем могут быть преобразованы в показания уровня. Ультразвуковые волны более высокой частоты (приблизительно 35 kHz или выше) обычно используются для измерений заполненного объема, т.к. такие волны легко перемещаются в жидкой среде, но скорее всего поглощаются или отражаются воздушной средой.

Непрерывное измерение уровня, в котором используются низкочастотные ультразвуковые волн

На рисунке выше изображена упрощенная схема акустической системы, которая используется для непрерывного измерения уровня. Основными деталями этой системы является блок управления, акустический излучатель и приемник. Здесь имеется электрическое подсоединение блока управления к внешней цепи, посредством которого обеспечивается подача электрического входного сигнала на излучатель. Излучатель преобразует электрическую энергию в звуковую энергию в виде звуковых волн. В данном примере электрическая энергия преобразуется в звуковые волны такой частоты, при которой они будут проходить через воздушную среду, но будут отражаться от поверхности жидкости. Когда звуковые волны отталкиваются от поверхности жидкости, они затем возвращаются к приемнику, который преобразует звуковые волны обратно в электрическую энергию. Блок управления посылает на индикатор электрический сигнал, который прямо пропорционален величине транзитного времени. На индикаторе фиксируется показание, которое в свою очередь прямо пропорционально уровню жидкости.

Непрерывное измерение уровня с использованием низкочастотных ультразвуковых волн — уровень жидкости в емкости повысился

Уровень жидкости увеличился и на индикаторе показание высокого уровня в емкости. При повышении уровня звуковым волнам требуется меньшее количество времени на то, чтобы пройти расстояние от излучателя до поверхности жидкости и обратно к приемнику: величина транзитного времени уменьшается. Соответственно, когда уровень жидкости понижается, величина транзитного времени увеличивается.

Иногда установка акустической системы наверху емкости может быть нежелательной. Некоторые жидкости испаряются, образуя пары, которые могут помешать проходу звуковых волн через воздушную среду, находящуюся выше уровня жидкости. В случаях возможного наличия в воздушной среде помех для звуковых волн, для непрерывного измерения уровня могут быть использованы высокочастотные ультразвуковые системы.

Непрерывное изменение уровня с помощью высокочастотных ультразвуковых волн

На рисунке выше акустическая система располагается на донной плоскости емкости. В этой системе используется высокочастотный звуковой сигнал, который проходит через жидкость и отражается от воздушной среды. В остальном, система работает по тому же самому принципу, что и система из предыдущего примера.

Механические поплавковые датчики

Легкий поплавок, постоянно находящийся на поверхности жидкости в резервуаре, системой механических рычагов связан со средним выводом потенциометра, который является плечом моста сопротивлений. При минимальном количестве жидкости в емкости мост считается сбалансированным. Напряжение в его измерительной диагонали отсутствует.

По мере заполнения резервуара поплавок отслеживает положение уровня жидкости, перемещая через систему рычагов подвижный контакт потенциометра. Изменение сопротивления потенциометра приводит к нарушению сбалансированного состояния моста. Появившееся напряжение в его измерительной диагонали используется электронной схемой системы индикации. Ее аналоговые или цифровые показания соответствуют количеству жидкости в резервуаре в текущий момент времени.

Тросовые и ультразвуковые варианты

Скважинный уровнемер может быть представлен разными вариантами. Чаще всего используют тросовые приборы. На рынке можно встретить несколько видов таких датчиков:

  1. Лотовый. Конструкция напоминает лебедку, но на конце троса размещена лот-хлопушка. При соприкосновении детали с зеркалом воды подается характерный звук. Именно это является сигналом для снятия показаний. Строение лотовых приборов простое, при этом нет необходимости в использовании сети питания. Но сделать точные измерения могут помешать посторонние шумы, особенно если большая глубина скважины. Оптимальная глубина источника для измерения лотовым агрегатом должна составлять до 100 м.
  2. Электроконтактный. Ролик устройства оборудован специальными зацепами для фиксации в верхней части колонны. Он используется для защиты троса от возможных повреждений. Чтобы обеспечить подачу электроэнергии, контакт соприкасается с трубой с помощью шнура и зажима. Труба при этом – проводник. Трос не должен контактировать с краем обсадной колонны. Для работы агрегат держат за ручку и включают рычаг тормоза. Затем электрод с утяжелителем опускается в скважину. Когда прибор соприкасается с водой, то раздается характерный звук, а на катушке загорается лампочка. За разметкой на тросе можно снять показания.
  3. Электроконтактный с термометром. Такое устройство устанавливает не только глубину скважины, но и температуру воды. В барабане находится дисплей, где указана температура.

В продаже можно найти комбинированные приборы. С их помощью определяют глубину гидротехнических скважин с трубами из полипропилена. Трос при этом имеет двойную жилу, хоть и относится к электроконтактным устройствам.


Одним из наиболее популярных является тросовый уровнемер

Наиболее дорогим измерителем является ультразвуковой прибор. Для получения данных агрегат подключается к компьютеру или специальному аналогу, который прилаживается к устройству. Использовать ультразвуковой уровнемер разрешено только после специального обучения. Кроме основной функции, прибор может находить повреждения трубы и определять их сложность.

Такие приборы не нуждаются в погружении в жидкость. Датчик устанавливают на устье скважины, и он посылает сигналы вниз, а затем данные отображаются на мониторе. Можно найти и агрегаты, которые обладают только функцией определения расстояния до воды.

Преимущества и недостатки ультразвуковых датчиков

Преимущества:

  • ультразвуковые передатчики легко устанавливаются на поверхности или на резервуары, содержащие жидкость;
  • настройка проста, и эти устройства с возможностью бортового программирования могут быть сконфигурированы за считанные минуты;
  • поскольку нет контакта со средой и движущихся частей, устройства практически не требуют технического обслуживания;
  • поскольку устройство бесконтактно, измерение уровня не зависит от изменений плотности жидкости;
  • изменения температуры изменят скорость ультразвукового импульса, но встроенный температурный датчик автоматически исправит погрешности при вычислении;
  • изменения технологического давления не влияют на измерение.

Недостатки:

  • ультразвуковые датчики рассчитаны на то, что импульс не будет затронут во время его полета, поэтому следует избегать жидкостей, образующих тяжелые газы или слои пара;
  • поскольку для прохождения импульса требуется воздух, применение ультразвукового-датчика в вакууме невозможно;
  • конструкционные материалы прибора обычно ограничивают температуру работы, примерно до 70 C;
  • приборы можно использовать на силосохранилищах, содержащих сухие продукты, такие как гранулы, зерна или порошки, но необходимо учитывать такие факторы, как угол поверхности, запыленность и расстояние.

Схема подключения ёмкостного уровнемера

Емкостной датчик уровня для топливных или стационарных топливных баков может подключаться по цифровой или аналоговой схеме с использованием изолированной CAN-шины и контроллера. Также используется двухпроводная схема подключения, позволяющая непрерывно контролировать уровень жидкости. Кроме того, отдельные модели можно монтировать с использованием трубной насадки или с кабельным пробником.

Поскольку емкостные уровнемеры измеряют емкость конденсатора, а изолятором-диэлектриком служит продукт измерения, то для точного проведения работ приборы можно устанавливать только в емкости с металлическими стенками, причем та из стенок, куда будет выполняться крепление должна быть расположена строго параллельно зонду.

После подключения выполняют контрольный запуск, проводят калибровку на абсолютно пустой и полностью заполненной емкости.

В предлагают емкостные датчики контроля уровня топлива с полным описанием и инструкцией по подключению (представлены схемы в зависимости от интерфейса).

Уровнемер топлива с интерфейсом CAN Длина штока: 800 мм / 1600 мм Чувствительность: > 2 единиц на мм, обычно 15 единиц на мм Фильтры цифровой интеграции: Настраиваемая константа времени и коэффициент интеграции, скорость изменения выходного сигнала 15…240 мм/мин

Ультразвуковые приборы

Стоит отметить, что требования к указателям уровня жидкости вполне приемлемые – они могут использовать в жидкой среде. Но работают неплохо и с сухими веществами. У датчиков уровня такого типа выходы могут быть дискретными или аналоговыми. Другими словами, прибор может ограничить наполнение при достижении какой-либо точки. Также существует возможность постоянно следить за уровнем. В конструкцию входит излучатель ультразвукового сигнала, приемник и контроллер, позволяющий осуществить обработку сигнала.

Система функционирует по такому принципу:

  1. От излучателя исходит импульс.
  2. Сигнал принимается прибором.
  3. Производится анализ затухания ультразвукового сигнала. В том случае, если бак полный, то сигнал будет максимальным. Если же он пустой, то минимальным.

Ультразвуковые приборы контроля уровня жидкости бесконтактные и не имеют проводов, поэтому их допускается использовать даже во взрывоопасных и агрессивных средах.

После того, как будет проведена первичная настройка, обслуживать прибор нет необходимости – его ресурс очень высокий, в частности, за счет отсутствия подвижных элементов.

Буйковые средства измерения уровня

Средства измерений уровня этого вида входят в номенклатуру приборов ГСП.

В основу работы буйковых уровнемеров положено физическое явление, описываемое законом Архимеда. Чувствительным элементом в этих уровнемерах является цилиндрический буек, изготовленный из материала с плотностью большей плотности жидкости. Буек находится в вертикальном положении и частично погружен в жидкость. При изменении уровня жидкости в аппарате масса буйка в жидкости изменяется пропорционально изменению уровня. Преобразование веса буйка в сигнал измерительной информации осуществляется с помощью унифицированных преобразователей «сила – давление» и «сила – ток». В соответствии с видом используемого преобразователя силы различают пневматические и электрические буйковые уровнемеры.

Схема буйкового пневматического уровнемера приведена на (рис.3а). Уровнемер работает следующим образом. Кода уровень жидкости в аппарате равен начальному h

(в частном случае он может быть равен 0),измерительный рычаг 2 находится в равновесии, т.к. моментМ 1, создаваемый весом буйкаG , уравновешивается моментомМ2 , создаваемым противовесомN .

Когда уровень жидкости становится выше h

, часть буйка погружается в жидкость. Поэтому вес буйка уменьшается следовательно уменьшается и моментМ1 , создаваемый буйком на рычаге2 . Так какМ2 становится большеМ1 , рычаг2 поворачивается вокруг точкиО по часовой стрелке и прикрываетзаслонкой 7 сопла 8 . поэтому давление в линии сопла увеличивается. Это давление поступает впневматический усилитель 10 , выходной сигнал которого является выходным сигналом уровнемера. Этот де сигнал одновременно посылается всильфон отрицательной обратной связи 5 . При действии давленияРвых возникает силаR , моментМ3 которой совпадает по направлению с моментомМ1 ­, т.е действие силыR направлено на восстановление равновесия рычага2 . движение измерительной системы преобразователя происходит до тех пор, пока сумма моментов всех сил, действующих на рычаг 2 не станет равной нулю, т.е.

Подставляя моменты М1, М23 в виде произведений соответствующих сил и плеч получим

где G вес буйка при погружении его в жидкость на глубинуh;R

сила, развиваемая сильфоном5 ;

Силы G

иR определяем из следующих выражений:

Выбор датчиков уровня

При выборе уровнемеров руководствуются следующими целями:

  • Вид измеряемой жидкости. Ее характеристики, находим паспортную плотность измеряемого материала. К каким веществам относится вещество, опасно для человека или нет.
  • Материал емкости, в которой будет производится измерение. От него зависит принцип действия уровнемера.
  • Нужен ли вам с датчика аналоговый стандартный сигнал или предпочтительнее работа в качестве реле. Некоторые модели имеют встроенные схемы для обработки аналогового сигнала и преобразуют его в сигнал битовой логики.
  • Необходимо знать пределы измеряемой величины, в очень длинных сосудах, с быстро меняющимся объемом, поплавковый конструктив работать будет не стабильно. В таком случае предпочтительнее радарный уровнемер.
  • Современные уровнеметры оборудуют жидкокристаллическим экраном с отображением параметров в реальном времени и возможностью сохранения максимальных и минимальных значений. В параметрах датчика задается несколько уровней срабатывания, на каждый уровень свой дискретный выход. Задается плотность среды в настройках.
  • Учитывают санитарные нормы для области применения. Например, в пищевой промышленности для измерения воды, напитков предъявляются высокие требования. Обязательно из нержавеющей стали.
  • Необходимость сертификатов. Например, некоторые измерители ростехнадзор должен проверить и утвердить для использования на опасных объектах. Некоторым требуется разрешение санитарно-эпидемиологической службы в основном для воды и пищевых продуктов.
  • Пригодность датчиков к применению во взрывоопасной среде. Применяются такие на нефтехимических производствах. Производитель гарантирует, что из-за таких систем во время всего срока службы не произойдет возгорание горючей среды, в которой она находится.
  • Нужно учитывать возможность механических воздействий на систему, вибрации, электромагнитных волн, агрессивных сред.
  • Наличие температурных перепадов системы, максимально возможные состояния.
  • Насколько важна точность измерений уровня, один из важнейших параметров.

Примеры датчиков, их параметры и область применения

  • Датчик емкостной ДЕ-1. Область применения: во взрывоопасных средах металлургической, химической промышленности, и др. Отслеживание величины уровня, а также значений температуры жидких сред и сыпучих материалов. Питание осуществляется 8 .. 30В постоянного тока. применяются в системах аварийной защиты.
  • ЭСУ-1К сигнализатор уровня. Корпус сделан из фторопласта и стали. Размещают во взрывоопасных средах. Источник питания располагается вне опасной среды. питание 127…220В. Измерение жидких материалов таких как вода, спирт, нефть. Чувствительный элемент помещается в измеряемый материал, принцип действия емкостной. Материал блока питания из алюминиевого сплава.
  • РУ-305 реле уровня. Отслеживание состояния уровня жидких веществ. Взрывобезопасное исполнение. Температура использования -50..+50С. Не используются в химически агрессивных средах. Строго работают в одном положении, наклон недопустим. Работает измерение путем перемещающегося поплавка с магнитом. Отрабатывает путем срабатывания герконов. Точность измерений до 5мм. питание 220В, ток 1А.
  • Сигнализатор уровня СУ-100. Измерение уровня жидких и твердых веществ. Напряжение питания 24В. В составе имеется электромагнитное реле, чувствительный элемент помещается непосредственно в исследуемую жидкость. Измеряют предельное положение твердых веществ: песок, гравий, зерна.
  • Rosemount 5600 радарный уровнемер. Бесконтактное измерение любого вида веществ. Важна правильность установки, от этого зависит точность измерений. Питание 24-240В. Прибор не терпит электромагнитных излучений. Взрывозащитный корпус. Имеет блок дисплея. Для уровнемера разработано собственное приложение, упрощающее настройку . Применяется для измерения температуры в емкости. Для правильного полноценного использования возможностей уровнемера требуется квалифицированная настройка прибора. Необходимо использовать параметры при настройке: расстояние между опорной точкой и уровнем;
  • внутренний диаметр трубы;
  • длина подсоединения уровнемера.

Существует огромное количество разновидностей датчиков в продаже . Выбор необходимо остановить на наиболее экономически выгодном варианте для конкретного проекта.

Устройство и применение поплавкового датчика уровня воды

Поплавковые датчики уровня жидкости считаются самыми надёжными и дешёвыми устройствами для определения количества вещества в ёмкости. Благодаря простоте конструктивного решения, датчики поплавкового типа нашли широкое применение почти во всех областях промышленности. Незаменимыми помощниками они остаются и в бытовых условиях применения.

По расположению в резервуаре поплавковые выключатели можно разделить на вертикальные и горизонтальные.

Применение поплавковых датчиков с вертикальным расположением штока встречается намного чаще, нежели горизонтальных указателей. Внутри вертикального штока расположены герконы. Поплавок всегда располагается на поверхности жидкости, внутри его находится магнитный шарик. Приближаясь к геркону, поле магнита приводит к срабатыванию контактов, что и служит сигналом о наполнении ёмкости. Этот сигнал и приводит к срабатыванию контактов реле на насосе.

Если установка вертикального штока в резервуаре затруднена, то датчик крепят на стенке в горизонтальном положении.

Поплавковый выключатель для электрических насосов

Такое устройство призвано автоматизировать работу электрических насосов в различных системах водоснабжения и водоотведения. Принцип работы выключателя очень прост — включать или выключать электрический насос при достижении необходимого уровня жидкости.Выключатели бывают с двумя контактами или с тремя контактами. Двух контактный выключатель просто соединяет электрическую цепь, когда он находится в положении «выключен» или разъединяет её при положении – «включён».

Выключатели с тремя проводами являются универсальным устройством, где имеется один общий контакт, а переключение осуществляется между двумя другими. В одном положении электрическая цепь управления насосом соединяется одним проводом, а в другом – вторым. Поэтому такие выключатели могут срабатывать как при наполнении ёмкости, так и при её полном опустошении.

Пластиковый корпус выключателя может иметь различную форму (прямоугольную, круглую, овальную) и является водонепроницаемым и герметичным. Наличие воздуха внутри корпуса позволяет выключателю постоянно находиться в плавучем состоянии. Металлический шарик, который находится внутри корпуса, перекатываясь, коммутирует электрическую цепь реле насоса. Для качественного создания контакта при замыкании, в корпусе выключателя есть магниты. Благодаря им, шарик надёжно фиксируется в крайних положениях. Сила магнита рассчитана на прочное удержание шарика при уклоне до 70°.

Поплавковый клапан для водяных резервуаров

Поплавковый клапан обеспечивает контроль уровня воды в любом открытом баке. Работа его осуществляется без участия человека. Поэтому система, в которой используется такой клапан, является полностью автоматической.

Состоит поплавковый клапан из:

  • Поплавка.
  • Подвижной рычажной системы.
  • Пропускного узла, в который входят входные и выходные патрубки.

Устанавливается клапан внутри определённой ёмкости, предназначенной для хранения и, при необходимости, для автономного снабжения водой, если отсутствует центральное водоснабжение.

Принцип работы клапана очень прост. Если уровень воды снизился, то поплавок опускается, открывая клапан и доступ к подаче воды. При полном заполнении — поплавок поднимается, закрывая клапан.

Как видно из статьи, во многих случаях устройство и обслуживание систем контроля, за уровнем жидкости в резервуаре, не представляет никаких сложностей. Поэтому настроить её несложно своими руками. А также имея хоть небольшие знания электрики, несложно подключить насос самостоятельно.

Особенности принципа работы

Общий принцип работы уровнемеров буйкового типа заключается в использовании выталкивающей силы, действующий на погруженный в жидкость буек. Количество вытесненной жидкости (+ выталкивающая сила) напрямую зависит от уровня в резервуаре через глубину погружения буйка. Действие силы оценивается специальными датчиками и преобразуется в требуемый сигнал.

Два основных варианта исполнений представлены на примере моделей 244LD и UQD.

1. C использованием измерительной камеры (244LD или ZTD) Прибор присоединяется к резервуару, образуя с ним смежные сосуды. Буек движется внутри измерительной камеры. Возможны измерения уровня, плотности и границ раздела фаз. Детальнее принцип описан на страницах буйковых уровнемеров 244LD и ZTD.

2. Без измерительной камеры (UQD) Устройства такого типа присоединяются к емкости посредством фланцевого соединения. Имеют в своем составе поплавок, перемещающийся под изменением уровня в емкости и балансировочную систему из рычага и грузов. Значения уровня передаются датчикам через систему шатунов и осей, обрабатываются электроникой и выдаются в систему.

Преимущества буйковых уровнемеров

К общим достоинствам буйковых уровнемеров относят метод измерения, по которому они работают – он хорошо известен и практически исключает ошибки и неточности при контроле жидких сред. Также буйковые уровнемеры отличаются простотой конструкции, широким диапазоном рабочих давлений и температур, что делает область применения устройства очень разнообразным. Пожалуй, единственный недостаток данных приборов – это запрет на использование в средах, образующих налипание или отложение осадка на поплавок.

Различные модификации имеют свои особенности и преимущества. Например, буйковые преобразователи уровня СКБ-02 обладают возможностью:

  • Работать с расширенным диапазоном плотностей жидкостей и газов — от 200 до 2000 кг/м³.
  • Проводить измерения с повышенной точностью (погрешность составляет менее 0,25%).
  • Эксплуатироваться в жестких условиях, так как конструкция обладает повышенной прочностью и взрывобезопасностью.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector