При какой температуре загорается водород

Примечания[править | править код]

  1. ↑ Sánchez, Williams – review, 2014.
  2. ↑ Уравнение горения стехиометрической водородно-воздушной смеси: 0,21·2Н2 + 0,21О2 + 0,79(N2 + …) → 0,42H2O + 0,79(N2+…).
  3. ↑ Гельфанд и др., Водород: параметры горения и взрыва, 2008, с. 85,196.
  4. ↑ Корольченко, Пожаровзрывоопасность веществ, 2004, с. 311.
  5. ↑ Konnov A. A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion // Combustion and Flame. – Elsevier, 2008. – Vol. 152, № 4. – P. 507-528. – doi:10.1016/j.combustflame.2007.10.024.
  6. ↑ Shimizu K., Hibi A., Koshi M., Morii Y., Tsuboi N. Upd Kinetic Mechanism for High-Pressure Hydrogen Combustion // Journal of Propulsion and Power. – American Institute of Aeronautics and Astronautics, 2011. – Vol. 27, № 2. – P. 383-395. – doi:10.2514/1.48553.
  7. ↑ Burke M. P., Chaos M., Ju Y., Dryer F. L., Klippenstein S. J. Comprehensive H2/O2 kinetic model for high-pressure combustion // International Journal of Chemical Kinetics. – Wiley Periodicals, 2012. – Vol. 44, № 7. – P. 444-474. – doi:10.1002/kin.20603.
  8. ↑ Льюис, Эльбе, Горение, пламя и взрывы в газах, 1968, с. 35.
  9. ↑ Ball, Philip. Nuclear waste gets star attention (англ.) // Nature : journal. – 2006. – ISSN 1744-7933. – doi:10.1038/news060731-13.
  10. ↑ Ruggero Maria Santilli. A new gaseous and combustible form of water (англ.) // International Journal of Hydrogen Energy : journal. – 2006. – Vol. 31, no. 9. – P. 1113-1128. – doi:10.1016/j.ijhydene.2005.11.006.
  11. ↑ J. M. Calo. s on “A new gaseous and combustible form of water” by R.M. Santilli (Int. J. Hydrogen Energy 2006: 31(9), 1113-1128) (англ.) // International Journal of Hydrogen Energy : journal. – 2006. – 3 November (vol. 32, no. 9). – P. 1309-1312. – doi:10.1016/j.ijhydene.2006.11.004. Архивировано 1 августа 2013 года.
  12. ↑ Martin O. Cloonan. A chemist’s view of J.M. Calo’s s on: “A new gaseous and combustible form of water” by R.M. Santilli (Int. J. Hydrogen Energy 2006:31(9), 1113-1128) (англ.) // International Journal of Hydrogen Energy : journal. – 2008. – Vol. 33, no. 2. – P. 922-926. – doi:10.1016/j.ijhydene.2007.11.009. Архивировано 20 марта 2012 года.
  13. ↑ J.V. Kadeisvili. Rebuttal of J.M. Calo’s s on R.M. Santilli’s HHO paper (англ.) // International Journal of Hydrogen Energy : journal. – 2008. – Vol. 33, no. 2. – P. 918-921. – doi:10.1016/j.ijhydene.2007.10.030. Архивировано 20 марта 2012 года.

Применение [ править | править код ]

В XIX веке для освещения в театрах использовался так называемый друммондов свет, где свечение получалось с помощью пламени кислород-водородной смеси, направленного непосредственно на цилиндр из негашёной извести, которая может нагреваться до высоких температур (белого каления) без расплавления. В пламени кислород-водородной смеси достигается высокая температура, и также в XIX веке это нашло применение в паяльных лампах для плавления тугоплавких материалов, резки и сварки металлов. Однако все эти попытки применения гремучего газа были ограничены тем, что он очень опасен в обращении, и были найдены более безопасные варианты решения этих задач.

В настоящее время водород считается перспективным топливом для водородной энергетики. При горении водорода образуется чистая вода, поэтому этот процесс считается экологически чистым. Основные проблемы связаны с тем, что затраты на производство, хранение и транспортировку водорода к месту его непосредственного применения слишком высоки, и при учёте всей совокупности факторов водород пока не может конкурировать с традиционными углеводородными топливами.

Получение

Основная статья: Производство водорода

См. также: Биотехнологическое получение водорода

В промышленности

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа. Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.

Конверсия метана с водяным паром при 1000 °C:

 CH4 + H2O  ⇄  CO + 3H2 

Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:

 H2O + C  ⇄  CO↑ + H2↑ 

Электролиз водных растворов солей:

 2NaCl + 2H2O →  2NaOH + Cl2↑ + H2↑ 

Электролиз водных растворов гидроксидов активных металлов (преимущественно, гидроксида калия)

 2H2O →4e− 2H2↑ + O2
Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной.

Каталитическое окисление кислородом:

 2CH4 + O2 ⇄  2CO + 4H2 

Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:

 Zn + H2SO4 → ZnSO4 + H2

Взаимодействие кальция с водой:

 Ca + 2H2O → Ca(OH)2 + H2

Гидролиз гидридов:

 NaH + H2O → NaOH + H2↑ 

Действие щелочей на цинк или алюминий:

 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2
 Zn + 2KOH + 2H2O → K2[Zn(OH)4] + H2

С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

 2H3O+ + 2e− → 2H2O + H2

Очистка

В промышленности реализованы несколько способов очистки водорода из углерод-содержащего сырья (т. н. водородсодержащий газ — ВСГ).

  • Низкотемпературная конденсация: ВСГ охлаждают до температур конденсации метана и этана, после чего водород отделяют ректификацией. Процесс ведут при температуре −158 °C и давлении 4 МПа. Чистота очищенного водорода составляет 93—94 % при его концентрации в исходном ВСГ до 40 %.
  • Адсорбционное выделение на цеолитах: Настоящий метод на сегодняшний день наиболее распространён в мире. Метод достаточно гибок и может использоваться как для выделения водорода из ВСГ, так и для доочистки уже очищенного водорода. В первом случае процесс ведут при давлениях 3,0—3,5 МПа. Степень извлечения водорода составляет 80-85 % с чистотой 99 %. Во втором случае часто используют процесс «PSA» фирмы «Union Carbide». Он впервые был реализован в промышленности в 1978 году. На настоящий момент функционирует более 250 установок от 0,6 до 3,0 млн м3 H2/сут. Образуется водород высокой чистоты 99,99 %.
  • Абсорбционное выделение жидкими растворителями: Этот метод применяется редко, хотя водород получается высокой чистоты 99,9 %.
  • Концентрирование водорода на мембранах: На лучших образцах метод позволяет получать водород чистотой 95-96 %, однако производительность таких установок невысока.
  • Селективное поглощение водорода металлами: Метод основан на способности сплавов лантана с никелем, железа с титаном, циркония с никелем и других поглощать до 30 объёмов водорода.

Стоимость

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2—7 USD/кг. В небольших количествах перевозится в стальных баллонах зелёного или тёмно-зелёного цвета.

„Процесной контролер с ШИМ ”

Процесной контролер с ШИМ -устройство, которое управляет всеми процессами происходящими в ходе работы Генератора Газа Брауна. Он регулирует величину тока в зависимости от режима в котором находится двигатель автомобиля в настоящий момент. Например, на холостом ходу ток который берется из альтернатора – 5-8 ампер, а при более 2000 оборотов он может быть 18-30 ампер(в зависимости от объема двигателя). Контроллер управляется сигналами которые генерируются автомобилем или датчиком следящим за оборотами автомобиля, который мы производим. Имеем два вида „ Контроллера процесса” – работающий на 12-14 вольтах и на 24-28 вольтах. Регулятор управляется несколькими способами: – от сигнала об оборотах, который берется от альтернатора автомобиля или от какого-либо датчика – например, коленчатого или распределительного вала, от внешнего датчика предоставленного нами или от частотного сигнала который генерируется при индукции от напряжения проходящего через любой кабель свечи зажигания автомобиля. Этот сигнал подается на тонкий кабель, который проходит между двумя толстыми кабелями со стороны входа контроллера. На некоторых Контроллерах процесса предназначенных для бензиновых автомобилей имеется выходной кабель к которому может быть подан как управляющий сигнал напряжения от TPS датчика расположенного на дроссельной заслонке. В принципе, сигнал там имеет напряжение от 0,8 до 4 вольт. После подачи этого напряжения не требуется никаких настроек контроллера – с помощью этого сигнала, он будет прекрасно работать. После подачи соответствующего сигнала, Контроллер процесса начнет работать в некотором состоянии в соответствии с поступающими сигналами. Для точной настройки необходимо открыть коробку контроллера и настроить его в соответствии с вашими нуждами. Это делается путем перемещения

перемычек, расположенных на материнской плате. Контроллер подает ток различной величины к электролизеру – в рамках 4 – 30 ампер. Контроллер процесса” помещен в пластиковую коробку. „ Контроллер процесса „ спроектирован так, что подает ток к электролизеру после запуска двигателя и начала зарядки аккумулятора током напряжением более 13,2 вольт. Это делается для того, чтобы не нагружать альтернатор автомобиля в начале работы, чтобы не брать ток от аккумулятора и использовать только свободный ток производимый альтернатором для получения HHO газа. Эта функция контроллера выступает и в качестве защиты от перегрузки – когда в автомобиле включается много приборов, напряжение, которым заряжается аккумулятор падает и, если значение падает ниже 13,2 вольт, контроллер выключает ” Генератор Газа Брауна “, чтобы предотвратить перегрузку генератора. Новые Контроллеры процесса которые сделаны с однокорпусн ым микропроцессором настраиваются компьютером при помощи программатора, который мы предоставляем и программного обеспечения, которое мы разработали.

Контакты – Заказ …

Прайс лист …

Безопасность горения

Это важная характеристика воспламеняющейся смеси, поскольку она позволяет судить о том, происходит реакция спокойно, и можно ее контролировать, либо процесс имеет взрывной характер. От чего зависит скорость горения? Конечно же, от концентрации реагентов, от давления, а также от количества энергии “затравки”.

К большому сожалению, водород в широком интервале концентраций способен к взрывному горению. В литературе приводятся следующие цифры: 18,5-59 % водорода в воздушной смеси. Причем на краях этого предела в результате детонации выделяется наибольшее количество энергии на единицу объема.

Отмеченный характер горения представляет большую проблему для использования этой реакции в качестве контролируемого источника энергии.

Применение

Друммондов свет

В XIX веке для освещения в театрах использовался так называемый друммондов свет, где свечение получалось с помощью пламени кислород-водородной смеси, направленного непосредственно на цилиндр из негашёной извести, которая может нагреваться до высоких температур (белого каления) без расплавления. В пламени кислород-водородной смеси достигается высокая температура, и также в XIX веке это нашло применение в паяльных лампах для плавления тугоплавких материалов, резки и сварки металлов. Однако все эти попытки применения гремучего газа были ограничены тем, что он очень опасен в обращении, и были найдены более безопасные варианты решения этих задач.

В настоящее время водород считается перспективным топливом для водородной энергетики. При горении водорода образуется чистая вода, поэтому этот процесс считается экологически чистым. Основные проблемы связаны с тем, что затраты на производство, хранение и транспортировку водорода к месту его непосредственного применения слишком высоки, и при учёте всей совокупности факторов водород пока не может конкурировать с традиционными углеводородными топливами.

Химическая стабильность

Рассматривая химические качества бензина, нужно делать основной акцент на то, как долго состав углеводородов будет неизменным, так как при долгом складировании более легкие компоненты исчезают, и эксплуатационные качества сильно снижаются.

В частности, остро проблема стоит тогда, если из бензина с минимальным октановым числом получилось горючее более высокой марки (АИ 95) методом добавления в его состав пропан или метана. Их антидетонационные качества выше, чем у изооктана, но и рассеиваются они моментально.

По ГОСТу химический состав топлива любой марки должен быть неизменным в течение 5 лет при соблюдении правил складирования. Но на деле часто даже только что приобретенное топливо уже имеет октановое число ниже заданного.

Виноваты в этом недобросовестные продавцы, которые добавляют сжиженный газ в емкости с горючим, время хранения которого истекло, и содержание не отвечает требованиям ГОСТа. Обычно к одному и тому же топливу добавляют различное число газа для получения октанового числа, равного 92 или 95. Подтверждением таких хитростей является резкий запах газа на АЗС.

Теплотворная способность различных видов топлива. Сравнительный анализ

(рис. 14.1 – Теплотворная способность топлива)

Обратите внимание на теплотворную способность (удельную теплоту сгорания) различных видов топлива, сравните показатели. Теплотворная способность топлива характеризует количество теплоты, выделяемое при полном сгорании топлива массой 1 кг или объёмом 1 м³ (1 л)

Наиболее часто теплотворная способность измеряется в Дж/кг (Дж/м³; Дж/л). Чем выше удельная теплота сгорания топлива, тем меньше его расход. Поэтому теплотворная способность является одной из наиболее значимых характеристик топлива. Удельная теплота сгорания каждого вида топлива зависит:

  • От его горючих составляющих (углерода, водорода, летучей горючей серы и др.).
  • От его влажности и зольности.
Таблица 4 — Удельная теплота сгорания различных энергоносителей, сравнительный анализ расходов.
Вид энергоносителя Теплотворная способность Объёмная плотность вещества (ρ=m/V) Цена за единицу условного топлива Коэфф. полезного действия (КПД) системы отопления, % Цена за 1 кВт·ч Реализуемые системы
МДж кВт·ч
(1Мдж=0.278кВт·ч)
Электричество 1,0 кВт·ч 3,70р. за кВт·ч 98% 3,78р. Отопление, горячее водоснабжение (ГВС), кондиционирование, приготовление пищи
Метан (CH4, температура кипения: -161,6 °C) 39,8 МДж/м³ 11,1 кВт·ч/м³ 0,72 кг/м³ 5,20р. за м³ 94% 0,50р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Пропан (C3H8, температура кипения: -42.1 °C) 46,34 МДж/кг 23,63 МДж/л 12,88 кВт·ч/кг 6,57 кВт·ч/л 0,51 кг/л 18,00р. за л 94% 2,91р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Бутан C4H10, температура кипения: -0,5 °C) 47,20 МДж/кг 27,38 МДж/л 13,12 кВт·ч/кг 7,61 кВт·ч/л 0,58 кг/л 14,00р. за л 94% 1,96р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Пропан-бутан (СУГ — сжиженный углеводородный газ) 46,8 МДж/кг 25,3 МДж/л 13,0 кВт·ч/кг 7,0 кВт·ч/л 0,54 кг/л 16,00р. за л 94% 2,42р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Дизельное топливо 42,7 МДж/кг 11,9 кВт·ч/кг 0,85 кг/л 30,00р. за кг 92% 2,75р. Отопление (нагрев воды и выработка электричества – очень затратны)
Дрова (берёзовые, влажность — 12%) 15,0 МДж/кг 4,2 кВт·ч/кг 0,47-0,72 кг/дм³ 3,00р. за кг 90% 0,80р. Отопление (неудобно готовить пищу, практически невозможно получать горячую воду)
Каменный уголь 22,0 МДж/кг 6,1 кВт·ч/кг 1200-1500 кг/м³ 7,70р. за кг 90% 1,40р. Отопление
МАРР газ (смесь сжиженного нефтяного газа — 56% с метилацетилен-пропадиеном — 44%) 89,6 МДж/кг 24,9 кВт·ч/м³ 0,1137 кг/дм³ -р. за м³ 0% Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение

(рис. 14.2 – Удельная теплота сгорания)

Согласно таблице «Удельная теплота сгорания различных энергоносителей, сравнительный анализ расходов», пропан-бутан (сжиженный углеводородный газ) уступает в экономической выгоде и перспективности использования только природному газу (метану)

Однако следует обратить внимание на тенденцию к неизбежному росту стоимости магистрального газа, которая на сегодняшний день существенно занижена. Аналитики предрекают неминуемую реорганизацию отрасли, которая приведёт к существенному удорожанию природного газа, возможно, даже превысит стоимость дизельного топлива

Таким образом, сжиженный углеводородный газ, стоимость которого практически не изменится, остаётся исключительно перспективным – оптимальным решением для систем автономной газификации.

Химическая реакция горения

Рассматривая вопрос, температуры горения водорода с кислородом, приведем химическую реакцию, которая описывает этот процесс: 2H2 + O2 => 2H2O. То есть в реакции участвуют 3 молекулы (две водорода и одна кислорода), а продуктом являются две молекулы воды. Эта реакция описывает горение с химической точки зрения, и по ней можно судить, что после ее прохождения остается только чистая вода, которая не загрязняет окружающую среду, как это происходит при сгорании органического топлива (бензина, спирта).

С другой стороны, эта реакция является экзотермической, то есть помимо воды она выделяет некоторое количества тепла, которое можно использовать для приведения в движение машин и ракет, а также для его перевода в другие источники энергии, например, в электричество.

Спорные теории [ править | править код ]

В 1960-е года американский инженер Уильям Роудс (William Rhodes) якобы открыл «новую форму» воды, коммерциализированную Юллом Брауном (Yull Brown), болгарским физиком, эмигрировавшим в Австралию. «Брауновский газ», то есть фактически смесь кислорода и водорода, получаемая в аппарате электролиза воды, объявлялся способным очищать радиоактивные отходы, гореть как топливо, расслаблять мышцы и стимулировать проращивание семян . Впоследствии итальянский физик Руджеро Сантилли (en:Ruggero Santilli) выдвинул гипотезу, утверждающую существование новой формы воды в виде «газа HHO», то есть химической структуры вида (H × H — O), где «×» представляет гипотетическую магнекулярную связь, а «—» — обычную ковалентную связь. Статья Сантилли, опубликованная в авторитетном реферируемом журнале International Journal of Hydrogen Energy , вызвала жёсткую критику со стороны коллег, назвавших утверждения Сантилли псевдонаучными , однако некоторые другие учёные выступили в поддержку Сантилли .

Одной из актуальных проблем является загрязнение окружающей среды и ограниченность энергетических ресурсов органического происхождения. Многообещающим способом решения этих проблем является использование водорода в качестве источника энергии. В статье рассмотрим вопрос горения водорода, температуру и химию этого процесса.

Рынок производства водорода

При обеспечении дешевыми источниками тепла высокой температуры возможны и другие способы производства водорода

В частности, стоит обратить внимание на термохимический серно-йодный цикл. Термохимическое производство может быть эффективнее, чем ВТЭ из-за отсутствия потребности в тепловом двигателе

Однако промышленное термохимическое производство потребует новых передовых материалов, которые смогут выдерживать высокие температуру, давление и коррозию.

Рынок для водорода – велик (50 миллионов метрических тонн/год в 2004 году, стоимость – около 135 миллиардов долларов/год) и растет примерно на 10 % в год. Этот рынок связан с пиролизом углеводородов для получения водорода, что приводит к выбросам углекислого газа. Два главных потребителя – нефтеперерабатывающие заводы и производители удобрений (каждый из них получит примерно половину всего производства). Автомобили на водороде должны распространиться повсеместно, их потребление вырастет, что поможет увеличить потребность в водороде при приходе водородной энергетики.

Свойства водорода

Водород – самый распространенный химический элемент во Вселенной. Он составляет примерно половину массы Солнца и большинства звезд, является основным элементом в межзвездном пространстве и в газовых туманностях. Распространен водород и на Земле. Здесь он находится в связанном состоянии – в виде соединений. Так, вода содержит 11% водорода по массе, глина – 1,5%. В виде соединений с углеродом водород входит в состав нефти, природных газов, всех живых организмов. Немного свободного водорода содержится в воздухе, но его там совсем мало – всего 0,00005%. Он попадает в атмосферу из вулканов.

Водороду принадлежит много других «рекордов».
Жидкий водород – самая легкая жидкость (плотность 0,067 г/см3 при температуре –250°С),
Твердый водород – самое легкое твердое вещество (плотность 0,076 г/см3).
Атомы водорода – самые маленькие из всех атомов. Однако при поглощении энергии электромагнитного излучения внешний электрон атома может удаляться от ядра все дальше и дальше. Поэтому возбужденный атом водорода теоретически может иметь любые размеры. А практически? В книге Мировые рекорды в химии сказано, что в межзвездных облаках якобы обнаружены по их спектрам атомы водорода диаметром 0,4 мм (они зафиксированы по спектральному переходу с 253-й на 252-ю орбиталь). Атомы таких размеров вполне можно увидеть невооруженным глазом! При этом дается ссылка на статью, опубликованную в 1991 в самом известном в мире журнале, посвященном химическому образованию – Journal of Chemical Education (он издается в США). Однако автор статьи ошибся – он завысил все размеры ровно в 100 раз (об этом сообщил тот же журнал год спустя). Значит, обнаруженные атомы водорода имеют диаметр «всего лишь» 0,004 мм, и такие атомы, даже если бы они был «твердыми», невооруженным глазом увидеть нельзя – только в микроскоп. Конечно, по атомным меркам и 0,004 мм – величина огромная, в десятки тысяч раз больше диаметра невозбужденного атома водорода.

Молекулы водорода тоже очень маленькие. Поэтому этот газ легко проходит через самые тонкие щели. Резиновый шарик, надутый водородом, «худеет» намного быстрее шарика, надутого воздухом: молекулы водорода понемногу просачиваются через мельчайшие поры в резине.

Если вдохнуть водород и начать разговаривать, то частота издаваемых звуков будет втрое выше обычной. Этого достаточно, чтобы звук даже низкого мужского голоса оказался неестественно высоким, напоминающим голос Буратино. Происходит это потому, что высота звука, издаваемая свистком, органной трубой или голосовым аппаратом человека, зависит не только от их размеров и материала стенок, но и от газа, которым они наполнены. Чем больше скорость звука в газе, тем выше его тон. Скорость звука зависит от массы молекул газа. Молекулы водорода значительно легче молекул азота и кислорода, из которых состоит воздух, и звук в водороде распространяется почти вчетверо быстрее, чем в воздухе. Однако вдыхать водород рискованно: в легких он неминуемо смешается с остатками воздуха и образует гремучую смесь. И если при выдохе поблизости окажется огонь… Вот какая история произошла с французским химиком, директором Парижского музея науки Пилатром де Розье (1756–1785). Как-то он решил проверить, что будет, если вдохнуть водород; до него никто такого эксперимента не проводил. Не заметив никакого эффекта, ученый решил убедиться, проник ли водород в легкие. Он еще раз хорошо вдохнул этот газ, а затем выдохнул его на огонь свечи, ожидая увидеть вспышку пламени. Однако водород в легких смелого экспериментатора был смешан с воздухом и произошел сильный взрыв. «Я думал, что у меня вылетели все зубы вместе с корнями», – писал он впоследствии, очень довольный опытом, который чуть не стоил ему жизни.

Применение

Друммондов свет

В XIX веке для освещения в театрах использовался так называемый друммондов свет, где свечение получалось с помощью пламени кислород-водородной смеси, направленного непосредственно на цилиндр из негашёной извести, которая может нагреваться до высоких температур (белого каления) без расплавления. В пламени кислород-водородной смеси достигается высокая температура, и также в XIX веке это нашло применение в паяльных лампах для плавления тугоплавких материалов, резки и сварки металлов. Однако все эти попытки применения гремучего газа были ограничены тем, что он очень опасен в обращении, и были найдены более безопасные варианты решения этих задач.

В настоящее время водород считается перспективным топливом для водородной энергетики. При горении водорода образуется чистая вода, поэтому этот процесс считается экологически чистым. Основные проблемы связаны с тем, что затраты на производство, хранение и транспортировку водорода к месту его непосредственного применения слишком высоки, и при учёте всей совокупности факторов водород пока не может конкурировать с традиционными углеводородными топливами.

Спорные теории [ править | править код ]

В 1960-е года американский инженер Уильям Роудс (William Rhodes) якобы открыл «новую форму» воды, коммерциализированную Юллом Брауном (Yull Brown), болгарским физиком, эмигрировавшим в Австралию. «Брауновский газ», то есть фактически смесь кислорода и водорода, получаемая в аппарате электролиза воды, объявлялся способным очищать радиоактивные отходы, гореть как топливо, расслаблять мышцы и стимулировать проращивание семян . Впоследствии итальянский физик Руджеро Сантилли (en:Ruggero Santilli) выдвинул гипотезу, утверждающую существование новой формы воды в виде «газа HHO», то есть химической структуры вида (H × H — O), где «×» представляет гипотетическую магнекулярную связь, а «—» — обычную ковалентную связь. Статья Сантилли, опубликованная в авторитетном реферируемом журнале International Journal of Hydrogen Energy , вызвала жёсткую критику со стороны коллег, назвавших утверждения Сантилли псевдонаучными , однако некоторые другие учёные выступили в поддержку Сантилли .

Уйти от сжигания ископаемых углеводородов и получить дешевый альтернативный источник энергии – было и остается мечтой многих предприимчивых людей. Да и кто из домовладельцев не хотел бы получить подобный источник в свое распоряжение, чтобы с минимальными затратами обогревать свое жилище? Один из таких источников – так называемый газ Брауна, получаемый из обыкновенной воды. Но как его добыть и насколько он дешев – вопросы, ответы на которые можно найти в данном материале.

Характеристика водорода

Характеристики H2 представлены в таблицах ниже:

Водород в баллоне

Наименование Объем баллона, л Масса газа в баллоне, кг Объем газа (м3) при Т=15°С, Р=0,1 МПа
H2 40 0,54 6,0

Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:

  • Сколько кубов (м3) водорода в 40 литровом баллоне? Ответ: 6,0 м3
  • Сколько кг водорода в баллоне?Ответ: 0,54 кг
  • Сколько весит баллон с водородом?Ответ:
    58,5 кг — масса пустого баллона из углеродистой стали согласно ГОСТ 949;
    0,54 — кг масса водорода в баллоне;Итого: 58,5 + 0,54 = 58,94 кг вес баллона с водородом.

Рекомендуем к просмотру видео об открытии водорода, его характеристиках и производстве.

История

Еще средневековый ученый Парацельс заметил, что при действии кислот на железо выделяются пузырьки какого-то «воздуха». Но что это такое, он объяснить не мог. Теперь известно, что это был водород. «Водород представляет пример газа, – писал Д.И.Менделеев, – на первый взгляд не отличающегося от воздуха… Парацельс, открывший, что при действии некоторых металлов на серную кислоту получается воздухообразное вещество, не определил его отличия от воздуха. Действительно, водород бесцветен и не имеет запаха, так же, как и воздух; но, при ближайшем знакомстве с его свойствами, этот газ оказывается совершенно отличным от воздуха».

Английские химики 18 в., Генри Кавендиш и Джозеф Пристли, заново открывшие водород, первыми изучили его свойства. Они обнаружили, что это необычайно легкий газ – он в 14 раз легче воздуха. Если надуть им резиновый шарик, он взлетит ввысь. Это свойство водорода использовали раньше для наполнения воздушных шаров и дирижаблей. Правда, первый воздушный шар, построенный братьями Монгольфье, был наполнен не водородом, а дымом от горения шерсти и соломы. Такой странный способ получения горячего воздуха связан с тем, что братья, видимо, не были знакомы с законами физики; они наивно полагали, что эта смесь образует «электрический дым», способный поднять их легкий шар. Физик Шарль, знавший закон Архимеда, решил наполнить шар водородом; в отличие от монгольфьеров, наполненных горячим воздухом, шары с водородом французы называли шарльерами. Первый такой шар (он не нес никакого груза) поднялся с Марсова поля в Париже 27 августа 1783 и за 45 минут пролетел 20 км.

В декабре 1783 Шарль в сопровождении физика Франсуа Робера в присутствии 400 тысяч зрителей предприняли первый полёт на воздушном шаре, заполненном водородом. Гей-Люссак (также совместно с физиком Жаном Батистом Био) поставил в 1804 рекорд высоты, поднявшись на 7000 метров.

Но водород горюч. Более того, его смеси с воздухом взрываются, а смесь водорода с кислородом называют даже «гремучим газом». В мае 1937 пожар за несколько минут уничтожил гигантский немецкий дирижабль «Гинденбург» – в нем было 190 000 кубометров водорода. Тогда погибло 35 человек. После многих несчастных случаев водород в воздухоплавании больше не используют, его заменяют гелием или горячим воздухом.

При горении водорода образуется вода – соединение водорода и кислорода. Это доказал в конце 18 французский химик Лавуазье. Отсюда и название газа – «рождающий воду». Лавуазье также сумел получить водород из воды. Он пропускал водяные пары через раскаленную докрасна железную трубку с железными опилками. Кислород из воды прочно соединялся с железом, а водород выделялся в свободном виде. Сейчас водород тоже получают из воды, но другим способом – с помощью электролиза (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector