Ртс термисторы
Содержание:
- Сравнение типов температурных датчиков
- Принцип действия терморезисторов
- Принцип работы
- PTC Creo или “тяжелый» САПР на халяву
- Поддержка Arduino и схемы подключения
- Терморезисторы NTC с инкапсулированным покрытием
- Главные параметры терморезисторов
- Схемы подключения
- Зависимость сопротивления и температуры
- Группы терморезисторов, их характеристики
- Больше о сфере применения
- Основные характеристики терморезисторов
- NTC
Сравнение типов температурных датчиков
В приведенной ниже таблице показано сравнение разных типов температурных датчиков, описанных в данной статье. Однако имейте в виду, что эту информацию следует воспринимать как обобщение. Таблица предназначена в первую очередь для тех, у кого нет большого опыта и/или знаний о датчиках температуры.
Тип датчика | Типовой диапазон температур (°C) | Точность (+/- °C) | Достоинства | Недостатки | Применение |
---|---|---|---|---|---|
Термистор |
|
1 |
|
|
Измерение температуры окружающей среды |
Термопара | от -200° до 1450° | 2 |
|
|
Промышленное использование |
RTD | от -260° до 850° | 1 |
|
|
Промышленное использование |
Аналоговая микросхема | от -40° до 125° (TMP36) | 2 |
|
|
|
Цифровая микросхема | от -55° до 125° (DS18B20) | 0,5 |
|
|
|
Принцип действия терморезисторов
Термисторы и позисторы относятся к полупроводниковым термосопротивлениям, принцип работы которых основан на изменении сопротивления в зависимости от температуры. В зависимости от типа, они могут иметь как прямую, так и обратную нелинейную характеристику зависимости сопротивления от температуры.
NTC (Negative Temperature Coefficient) датчики, они же термисторы представляют собой полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления (ТКС). То есть при при достижении заданной температуры их сопротивление резко уменьшается.
PTC (Positive Temperature Coefficient ) позисторы наоборот, имеют положительный температурный коэффициент сопротивления (ТКС). Для данного типа характерно резкое увеличение своего сопротивления при достижении заданной температуры. Для электродвигателей чаще применяется именно этот тип защиты.
На каждую обмотку асинхронного двигателя монтируется по одному температурному датчику, то есть всего получается три датчика. Подключение датчиков, в зависимости от типа, может быть выполнено как параллельно, в случае применения термисторов, так и последовательно, в случае позисторов.
Помимо достоинств, есть у данной защиты и один недостаток, если это можно назвать недостатком. Дело в том, что датчики нельзя напрямую подключить к коммутационному устройству, например контактору. Требуется некое промежуточное звено, которое в начале проанализирует значение температуры с датчика, а потом уже выдаст сигнал на включение или отключение. Таким устройством является реле термисторной защиты.
Принцип работы
Сплав датчика изменяет токопроводимость при различной t°. Сопротивление при ее росте падает, при понижении — растет. Меняются электропараметры, что и регистрирует схема.
Микроконтроллер обслуживаемого прибора на основе полученных данных, учитывая спецификацию детектора, вычисляет сдвиги t°. Затем подает сигнал исполнительному узлу (реле, системе нагревателя, охлаждения) для действий при том или ином уровне t°.
Пример: учитывая описанный алгоритм на входе компаратора термостата, настроенного по температурной характеристике, происходит управление напряжением, оно претерпевает изменения.
Сами по себе датчик NTC не электронное устройство, он только фиксирует. В основе — нелинейная зависимость сопр. резистора от t° среды. Схема работы может быть и проще: простой вывод на табло значений или реле может реагировать сразу.
Сенсоры чувствительные к электромагнитным излучениям, полям, поэтому их экранируют или монтируют на отдалении от источников таких явлений (силовые провода).
PTC Creo или “тяжелый» САПР на халяву
Parametric Technology Corporation (PTC) — крупная американская компания, разработчик CAD/CAM/CAE/PLM-систем.
Компания была основана в 1985 году профессором Ленинградского университета Семёном Гейзбергом, эмигрировавшим в 1974 году в США и работавшим там в области разработки CAD/CAM-систем. Основывая PTC, С.Гейзберг задался целью разработать крупнейший в мире набор инструментальных программных средств нового поколения для автоматизации проектирования изделий машиностроения, которые должны были базироваться на методах ассоциативного параметрического моделирования с использованием базовых конструктивных элементов. Pro/ENGINEER (или Pro/E) являлся первым продуктом компании, вышедшем на рынок в 1988 году. Этот инновационный САПР перевернул рынок средств трехмерного моделирования благодаря новой технологии параметрического проектирования на основе конструктивных элементов.
В октябре 2010 года Pro/ENGINEER перестал существовать. Компания провела ребрендинг своих продуктов, которые вошли в состав новой системы Creo. Другими словами, новая система это Pro/ENGINEER, CoCreate и ProductView смешанные друг с другом, и затем разделенные на несколько продуктов для специальных задач: параметрическое моделирование, прямое моделирование, приложение для анализа и т.д. В перспективе в состав Creo должно входить около тридцати приложений.
Creo Parametric – это приложение для трехмерного параметрического моделирования на основе истории построения, обладающее всеми возможностями, ранее существовавшего, САПР тяжелого уровня Pro/ENGINEER.
И самое приятное, что компания PTC уделяет внимание студентам и школьникам. Благодаря PTC Academic Program for Schools все желающие могут абсолютно бесплатно и легально получить лицензию на Creo Parametric
Процесс не сложный, но запутанный. На сайте PTC существует несколько различных инструкций, форм регистрации, дистрибутивов и программ-установщиков. Все это многообразие вариантов может сбить с толку и отбить желание втягиваться в эту «авантюру». Поэтому специально для своих читателей инженерный портал «В масштабе.ру» провел небольшое исследование и публикует пошаговую инструкцию, чтобы максимально облегчить тернистый путь к знаниям.
Необходимо заполнить форму с данными внизу страницы и нажать кнопку Create Account>.
Поля формы | |
Английское название | Русское название |
First Name | Имя |
Last Name | Фамилия |
Адрес эл. почты | |
Confirm E-mail: | Повторить эл. почту |
Parent’s e-mail address | Эл. почта родителей (для лиц младше 13 лет) |
Title | Статус (школьник, студент, преподаватель) |
School | Название учебного заведения |
State/Province | Штат/область |
Country | Страна |
Password | Пароль |
Confirm Password | Повторить пароль |
Password Hint Question | Секретный вопрос (для восстановления пароля) |
Password Hint Answer | Ответ на Секретный вопрос |
На указанный вами адрес электронной почты придет письмо с подтверждением регистрации.
- Необходимо скачать дистрибутив программы Creo 2.0
https://apps.ptc.com/schools/Creo2_DVD.zip
- Распаковать скачанный архив
- Запустить setup.exe файл
- Выбрать Установить новое ПО и нажать Далее
Отметьте Я принимаю лицензионное соглашение и снова нажмите Далее.
- Введите номер BK390206EDSTUDENTUNICL в поле Простой ввод лицензии и нажмите кнопку Установить лицензирование.
Введите Пользователя (адрес эл. почты, указанный при регистрации на PTC) и Пароль.
- В случае успешного соединение с сервером, появится окно с сообщением об успехе и в списке появится файл лицензии.
Внимание: При возникновении ошибки рекомендуется отключить фаервол и/или антивирусное ПО. Также обязателен запуск программы установки от имени администратора на данном ПК
- На следующем этапе можно отредактировать список с устанавливаемыми программами и нажмите кнопку Установить.
- Дождитесь завершения процесса установки и нажмите кнопку Готово, чтобы закрыть программу установки.
Внимание: Первый запуск Creo Parametric обязательно производится от имени администратора. Во время запуска дождитесь окончания установки дополнительных компонентов
Вот и все. Теперь смело можно запускать программу. И приступить к повышению уровня своих знаний в области САПР, наслаждаясь, работой в современном CAD тяжелого уровня, полученным легально и совершенно бесплатно.
Поддержка Arduino и схемы подключения
Теперь мы лучше понимаем что такое датчики PT100 RTD, но как мы можем их точно использовать? В поисках поддержки Arduino мы обнаружили библиотеку PT100RTD на Github, в которой добавлена поддержка точного преобразования значений из Ом в Цельсия в RTD PT100 в Arduino IDE.
Разработчик предоставляет некоторые дополнительные сведения и размер библиотеки 3 КБ, поэтому, вместо этого, рекомендуется использовать «уравнение Каллендара-Ван Дюсена» для «обычных» измерений температуры в диапазоне от -60 °C до 650 °C.
Датчики являются аналоговыми датчиками, но вы не можете просто подключить их напрямую к одному из ваших аналоговых входов Arduino. Сигнал должен быть усилен, и быстрый веб-поиск показал два варианта, хотя их может быть больше:
- Мост Уитстона плюс операционный усилитель, как описано в Instructables.
Этот пост также подробно описывает математические расчеты, лежащие в основе конструкции схемы и должен быть хорошо прочитан. Схема Arduino не использует библиотеку PT100RTD, упомянутую выше, и намного проще, но учтите, что используемая схема поддерживает только от -51,85 до 129,87 градусов Цельсия .
2. Усилитель датчика температуры Adafruit PT100 RTD на основе MAX31865 продается за 14,95 $.
Как вы можете видеть выше, схема подключения намного проще с этой платой.Плата работает с датчиками PT100 с использованием 2-, 3- или 4-проводных кабелей, и компания также предлагает дополнительный датчик PT100 с диапазоном температур от 0 до 550 ° C.Adafruit также опубликовал очень подробное руководство для своего усилителя, и код Arduino опирается на библиотеку Arduino для датчика Adafruit MAX31865 RTD , но все же рекомендуем самую первую библиотеку PT100RTD, о которой мы упоминали в этом посте, если требуется максимально возможная точность.Если Arduino вам не подходит, руководство также предоставляет пример кода для MicroPython/CircuitPython.
Выражаем свою благодарность источнику из которого взята и переведена статья, сайту cnx-software.com.
Оригинал статьи вы можете прочитать здесь.
Терморезисторы NTC с инкапсулированным покрытием
Стекловолокно с термистором NTC
Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.
Терморезисторы NTC с инкапсулированным покрытием
Типичные области применения
Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.
Типичные области применения
Характеристика сопротивления-температуры
Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.
Текущая временная характеристика
Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.
Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.
Главные параметры терморезисторов
При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет
При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.
Параметры терморезисторов:
- ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
- СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
- ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
- ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
- Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
- Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
- Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
- Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.
Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.
- Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.
Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.
При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.
Схемы подключения
Подключение термистора
Схема A |
Схема B |
Схема C |
Схема D |
Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.
Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U0 = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.
Схема B призвана ограничить мощность, рассеиваемую на термисторе.
Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U0.
Подключение к АЦП микроконтроллера ATmega
Подключение АЦП микроконтроллеров ATmega |
У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.
Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.
Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.
Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.
Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.
Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.
Зависимость сопротивления и температуры
Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой
R(T) = A exp(b/T)
где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
Будет интересно Как прочитать обозначение (маркировку) резисторов
1/T = a+b(lnR)+c(lnR)3
где T – температура в К;
R – сопротивление в Ом;
a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.
Стеклянный термистор.
Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:
- a = 1,03 10-3
- b = 2,93 10-4
- c = 1,57 10-7
Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.
Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.
В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:
1/T = a+b(lnR)+c(lnR)2 + d(lnR)3
Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.
Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток
При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК)
Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:
- Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
- Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).
Терморезисторы часто разделят по диапазонам рабочих температур:
- Низкотемпературные (ниже 170 К);
- Среднетемпературные (170-510 К);
- Высокотемпературные (свыше 510 К).
Обозначение термистора указано на рисунке ниже.
Устройство термистора.
Группы терморезисторов, их характеристики
Все терморезисторы NTC делятся на группы в зависимости от показателей температуры, которую они способны выдерживать. Этот параметр объясняет, в каком режиме способно работать устройство, а где оно попросту не сможет справляться со своими функциональными обязанностями.
Терморезисторы бывают:
- низкотемпературные (до 170К);
- среднетемпературные (170–510К);
- высокотемпературные (900–1300К).
Терморезисторы разделяют также на термисторы и позисторы. У первых отрицательный температурный коэффициент (ТКС), у вторых — положительный. Известна еще одна разновидность — комбинированный компонент. Например, терморезистор NTC, который имеет косвенный нагрев. В корпусе устройства есть датчик, оснащенный нагревательным элементом. Он задает температуру терморезистору и начальное сопротивление тока. Эти радиоэлементы на практике встречаются в виде переменных резисторов, контролирующих напряжение, приложенное к датчику нагрева.
Классификация в зависимости от принципа действия
Исходя из принципа действия, терморезисторы делят на:
- контактные;
- бесконтактные.
К первой категории принято относить элементы биметаллического типа, разные термодатчики, а также термопары. Если речь идет о бесконтактном принципе действия, значит это датчики с инфракрасной опцией. Они способны определять ИК-излучение и оптические лучи, которые выделяются жидкостью и газами.
Больше о сфере применения
При правильной настройке и монтаже термистора, он может стать элементом для проверки температурного режима на улице или в помещении. С его помощью можно отслеживать любые его изменения. Конечно, речь не идет о настолько верных измерениях, как это требуется на производственных площадях. Шага в один градус будет вполне достаточно. Также деталь часто используется в защитной системе двигателя от перегрева. В таком случае специалист соединяет ее с реле. Если случается угроза нагревания, нарушающая все допустимые меры безопасного режима, двигатель отключается. При наличии опыта можно включить термистор в систему бортового ПК. Это позволяет отслеживать показатели на мониторе, что является весьма удобным решением на практике.
Все терморезисторы выпускаются в корпусах с защитными свойствами, что позволяет исключить влияние влаги на них. Это положительно отражается на сроках службы элемента. Если специалист правильно подберет терморезистор, он может рассчитывать на длительное использование элемента и оборудования, в котором он будет установлен.
Основные характеристики терморезисторов
Важно обращать внимание на характеристики термисторов NTC. Они могут меняться по ряду причин: производитель, тип и применяемый материал. В первую очередь покупатель должен изучить размер
Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа
В первую очередь покупатель должен изучить размер. Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа.
Следующие важные пункты:
- сопротивление RT;
- постоянная времени;
- коэффициент рассеивания.
Это основные моменты, которые нужно учитывать при покупке детали.
Характеристики нагрева
Есть 2 типа терморезисторов, если полагаться на способ нагревания, положенный в основу их принципа действия:
- косвенный;
- прямой.
При косвенном нагреве будет изменяться температура термистора под воздействием элементов, размещенных рядом с ним.
При прямом она также меняется, но только под влиянием окружающего воздуха или тока, который проходит через элемент. В этом и заключается основное отличие.
NTC
Основные сведения
Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.
Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.
Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.
Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже
Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.
Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.
Где используется
Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).
На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.
На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.
Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.
Принцип работы такой схемы:
Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.
Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.
Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.
Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.
Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.
Маркировка
Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:
На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:
5D-20
Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:
Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.
Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.