Стали: допускаемые напряжения и механические свойства материалов
Содержание:
- Вы здесь
- Текучесть металла
- Виды пределов прочности
- Предел прочности сталей
- Напряжения при растяжении-сжатии
- Определение
- Предел прочности сталей
- Усталость стали
- Как производится испытание на прочность
- Критерии
- Что это такое?
- Условный предел — текучесть
- Каким образом производится испытание на прочность?
- Предел прочности сталей
- Значение термина
Вы здесь
Предел прочности при растяжении
Предел прочности при растяжении (сопротивление на разрыв) или временное сопротивление разрыву σв — механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.
Предел прочности при растяжении измеряется:
1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа.
Предел прочности при растяжении
Материал | σв | ||
---|---|---|---|
кгс/мм2 | 107 Н/м2 | МПа | |
Металлы | |||
Алюминий | 8-11 | 7,8-10,8 | 78-108 |
Алюминий отожженный | 9,1-10,95 | 8,96-10,75 | 89-108 |
Бериллий | 14 | 13,8 | 138 |
Бронза (91 % Cu + 6 % Sn + 3 % Zn) | 20-38 | 19,6-37,3 | 196-373 |
Ванадий | 18-45 | 17,6-44,2 | 176-442 |
Вольфрам | 120-140 | 118,0-137,5 | 1180-1375 |
Вольфрам отожженный | 71,3-82,5 | 69,9-80,9 | 699-809 |
Дюраль | 40-50 | 39,2-49,1 | 392-491 |
Железо кованное | 40-60 | 39,2-58,9 | 392-589 |
Гафний | 35-45 | 34,5-44,2 | 345-442 |
Золото | 14-16 | 13,8-15,7 | 138-157 |
Золото отожженное | 12,6 | 12,4 | 124 |
Инвар | 78 | 76,5 | 765 |
Индий | 5,1 | 5,05 | 50,5 |
Кадмий | 6,4 | 6,3 | 63 |
Кальций | 6,1 | 6 | 60 |
Кобальт отожженный | 49,8 | 48,9 | 489 |
Константан (60 % Cu + 40 % Ni) | 32 | 31,4 | 314 |
Латунь (66 % Cu + 34 % Zn) | 10-20 | 9,8-19,6 | 98-196 |
Магний | 18-25 | 17,6-24,5 | 176-245 |
Магний литой | 30 | 29,4 | 294 |
Медь | 22-24 | 21,6-23,5 | 216-235 |
Медь деформированная | 20,4-25,5 | 20-25 | 200-250 |
Молибден | 40-70 | 39,3-68,6 | 393-686 |
Молибден литой | 31,4 | 30,8 | 308 |
Никель | 40-50 | 39,3-49,1 | 393-491 |
Ниобий | 35-50 | 34,5-49,1 | 345-491 |
Ниобий отожженный | 32,8-41,4 | 32,2-40,6 | 320-406 |
Олово | 1,7-2,5 | 1,7-2,5 | 17-25 |
Олово литое | 1,5-2,5 | 1,5-2,4 | 15-24 |
Палладий | 18-20 | 17,6-19,6 | 176-196 |
Палладий литой | 18,6 | 18,2 | 182 |
Платина | 24-34 | 23,5-34,0 | 235-34 |
Родий отожженный | 56 | 55 | 550 |
Свинец | 1,1-1,3 | 1,1-1,3 | 10,8-12,7 |
Серебро | 10-15 | 9,8-14,7 | 98-147 |
Серебро отожженное | 13,8 | 13,5 | 135 |
Сталь инструментальная | 45-60 | 44,1-58,9 | 441-589 |
Сталь кремнехромомарганцовистая | 155 | 152 | 1520 |
Сталь специальная | 50-160 | 49-157 | 491-1570 |
Сталь рельсовая | 70-80 | 68-78 | 687-785 |
Сталь углеродистая | 32-80 | 31,4-78,5 | 314-785 |
Тантал | 20-45 | 19,6-44,2 | 196-442 |
Титан | 25-35 | 24,5-34,5 | 245-345 |
Титан отожженный | 30 | 29,6 | 296 |
Хром | 30-70 | 29-69 | 294-686 |
Цинк | 11-15 | 10,8-14,7 | 108-147 |
Цирконий | 25-40 | 24,5-39,3 | 245-393 |
Чугун | 10-12 | 9,8-11,8 | 98-118 |
Чугун ковкий | 20 | 19,6 | 196 |
Чугун серый мелкозернистый | 21-25 | 20,6-24,5 | 206-245 |
Чугун серый обыкновенный | 14-18 | 13,7-17,7 | 137-177 |
Пластмассы | |||
Аминопласт слоистый | 8 | 7,8 | 78 |
Асботекстолит | 6,5-11,9 | 6,4-11,7 | 64-117 |
Винипласт | 4-6 | 3,9-5,9 | 39-59 |
Гетинакс | 15-17 | 14,7-16,7 | 147-167 |
Гранулированный сополимер | 4 | 3,9 | 39 |
Древесно-слоистый пластик ДСП-Б (длинный лист) | 22 | 21,6 | 216 |
Древесный коротковолнистый волокнит К-ФВ25 | 3 | 2,94 | 29,4 |
Капрон стеклонаполненный | 15-18 | 14,7-17,6 | 147-176 |
Пенопласт плиточный | 0,06 | 0,06 | 0,59 |
Пенопласт ФК-20 | 0,17 | 0,17 | 1,7 |
Полиакрилат (оргстекло) | 5 | 4,9 | 49 |
Полиамид наполненный П-68 | 5-6 | 4,9-5,9 | 49-59 |
Полиамид стеклонаполненный СП-68 | 7,4-8,5 | 7,3-8,3 | 73-83 |
Поливинилхлорид неориентированный | 3-5 | 2,9-4,9 | 29-49 |
Поликапроамид | 6,0-6,5 | 5,9-6,4 | 59-64 |
Поликапроамид стеклонаполненный | 12,9-15,0 | 12,7-14,7 | 127-147 |
Поликарбонат (дифион) | 6,0-8,9 | 5,9-8,7 | 59-87 |
Поликарбонат стеклонаполненный | 12,5-15,0 | 12,3-14,8 | 123-148 |
Полипропилен ПП-1 | 2,5 | 2,5 | 25 |
Полипропилен стеклонаполненный | 5,6 | 5,5 | 55 |
Полистирол стеклонаполненный | 7,4-10,5 | 7,3-10,3 | 73-103 |
Полистирол суспензионный ПС-С | 4,0 | 3,9 | 39 |
Полистирол эмульсионный А | 3,5-4,0 | 3,4-3,9 | 34-39 |
Полиформальдегид стабилизированный | 6-7 | 5,9-6,9 | 59-69 |
Полиэтилен высокого давления кабельный П-2003-5 | 1,20-1,39 | 1,18-1,37 | 11,8-13,7 |
Полиэтилен высокого давления П-2006-Т | 1,39 | 1,37 | 13,7 |
Полиэтилен низкого давления П-4007-Э | 2,20 | 2,16 | 21,6 |
Полиэтилен среднего давления | 2,70-3,29 | 2,65-3,23 | 26,5-32,3 |
Стекло органическое ПА, ПБ, ПВ | 5 | 4,9 | 49 |
Стеклотекстолит | 30 | 29,4 | 294 |
Текстолит графитированный | 9 | 8,8 | 88 |
Текстолит поделочный ПТК | 10 | 9,8 | 98 |
Фаолит А | 1,73 | 1,7 | 17 |
Фенопласт текстолитовый | 8-10 | 7,8-9,8 | 78-98 |
Фторопласт 3 | 3-4 | 2,9-3,9 | 29-39 |
Фторопласт 4 | 2 | 1,96 | 19,6 |
Целлон | 4 | 3,9 | 39 |
Дерево | |||
Бамбук | 22 | 21,6 | 216 |
Береза | 7 | 6,9 | 69 |
Бук | 8 | 7,8 | 78 |
Дуб | 8 | 7,8 | 78 |
Дуб (при 15 % влажности) вдоль волокон | 9,5 | 9,3 | 93 |
Ель | 5 | 4,9 | 49 |
Железное дерево | 22 | 21,6 | 216 |
Сосна | 5 | 4,9 | 49 |
Сосна (при 15 % влажности) вдоль волокон | 8 | 7,8 | 78 |
Минералы | |||
Графит | 0,5-1,0 | 0,5-0,9 | 4,9-9,8 |
Различные материалы | |||
Бакелит | 2-3 | 1,96-2,94 | 19,6-29,4 |
Гранит | 0,3 | 0,29 | 2,9 |
Кетгут | 42 | 41,2 | 412 |
Лед (0 °С) | 0,1 | 0,098 | 0,98 |
Нити кварцевые | 90 | 88,3 | 883 |
Нити шелковые | 26 | 25,5 | 255 |
Паутина | 18 | 17,6 | 176 |
Стекло органическое | 4 | 3,9 | 39 |
Текучесть металла
Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена
Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.
Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.
Текучесть металла
На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.
Это интересно: Катанка — что это такое, особенности использования
Виды пределов прочности
Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.
Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.
Различают следующие виды предела прочности при:
- сжатии — определяет способность материала сопротивляться давлению внешней силы;
- изгибе — влияет на гибкость деталей;
- кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
- растяжении.
Виды испытаний прочности материалов
Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.
Предел прочности сталей
В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.
Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.
Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):
- Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
- Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
- Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.
Категории прочности сталей
Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.
Напряжения при растяжении-сжатии
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня. Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Определение
Предел прочности материала при растяжении — это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.
Некоторые материалы ломаются очень резко, без , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.
Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему, часто мегапаскали (МПа), с использованием префикса СИ мега ); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в Соединенных Штатах — фунты на квадратный дюйм (фунт / дюйм 2 или фунт / кв. Дюйм). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.
Пластичные материалы
Рисунок 1: «Инженерная» кривая напряжения-деформации (σ – ε), типичная для алюминия 1. Предел прочности 2. Предел текучести 3. Пропорциональное предельное напряжение 4. Разрушение 5. Деформация смещения (обычно 0,2%)
Рисунок 2: «Техническая» (красный) и «истинная» (синяя) кривая зависимости напряжения от деформации, типичная для конструкционной стали .
- 1: Абсолютная сила
- 2: Предел текучести (предел текучести)
- 3: Разрыв
- 4: Область деформационного упрочнения
- 5: область шеи
- A: Видимое напряжение ( F / A )
- B: Фактическое напряжение ( F / A )
Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны . Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация неприемлема и используется в качестве конструктивного ограничения.
После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота — это максимальное напряжение на инженерной кривой напряжение-деформация, а координата инженерного напряжения этой точки — это предел прочности на растяжение, определяемый точкой 1.
Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов.
Предел прочности на растяжение является обычным инженерным параметром при проектировании элементов из хрупкого материала, поскольку такие материалы не имеют предела текучести .
Предел прочности сталей
В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.
Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.
Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):
- Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
- Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
- Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.
Категории прочности сталей
Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.
Усталость стали
Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.
Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.
Как производится испытание на прочность
Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.
Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.
Определение термина
Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:
Критерии
Определяющим показателем при покупке бетонной смеси являются условия и задачи ее использования. Для бетонных растворов существует два классифицирующих обозначения – марка и класс. Они информируют покупателя о свойствах строительного материала. Первая – это значение средней прочности, а второй — гарантировано обеспеченная прочность, которая обозначает, что свойства бетонных изделий обеспечиваются в 95 и больше случаях из 100.
Марка и класс определяется значениями:
- стойкости к сжатию (проектная, марочная);
- морозоустойчивости, воздействия высоких температур, влагонепроницаемости.
Что это такое?
Пределом прочности называется максимальное значение напряжений, который металл испытывает до начала разрушения. С точки зрения физики это сводится к усилию растяжения, прилагаемого к стержневидному образцу конкретного сечения, чтобы его разорвать. Кстати, понятие «предел прочности» хотя и употребляется повсеместно, не самое корректное.
Прочностные испытания – это тесты, проверяющие сопротивление разрыву, и они организовываются на особых испытательных стендах. В них недвижимо крепится один конец тестируемого образца, к другому же подсоединяют крепление гидравлического либо электромеханического привода. Этот привод создает усилие, которое, в свою очередь, плавно увеличивается. Оно действует на разрыв образца, на его изгиб либо скручивание. А благодаря умной электронной системе контроля можно отметить усилие растяжения и относительное удлинение, а также иные виды деформаций.
Такие испытания крайне важны, и специально для них создаются те станки, формируются те условия, которые максимально приближены к производственным. Они дают если не самую точную, то вполне достоверную оценку того, как металл будет вести себя в контексте эксплуатации. И прочность материала оценивается очень точно, а именно нужно посмотреть, как металл выдерживает нагрузку, не разрушаясь полностью. Если материал хрупкий, например, он может разрушаться сразу в нескольких местах.
Иначе говоря, предел прочности – есть максимальная механическая сила, которая может применяться к объекту до того, как тот начнет разрушаться. Только нет речи о химическом воздействии, но вот о каких-то негативных природных условиях, об определенных показателях среды говорить можно. Именно они могут как улучшать свойства металла, так и ухудшать их. Инженер не может при проектировании применить крайние значения, ведь он должен подразумевать погрешность, связанную с окружающими факторами, с длительностью использования и так далее.
Сталь – самый применяемый конструкционный материал, хотя и уступающий сейчас пластмассам и композитным составам, если и не полностью, то по ряду важных позиций. Если расчет предела прочности сделан корректно, материал будет долговечным и безопасным. Предел прочности стали связан с тем, о какой именно марке речь. На значение этого параметра влияет химический состав сплава, а также те температурные процедуры, которые могут повысить прочность материала – это и закалка, и отпуск, и отжиг.
Отдельные примеси могут снизить показатели прочности, а потому от них лучше избавляться еще во время отливки либо проката. Другие, напротив, повышают показатели. И их вносят в состав сплава.
Металлурги усложняют комбинации добавок, чтобы получить особые сочетания физических и механических характеристик стали. Но цена таких марок куда выше цены низкоуглеродистых стандартных сплавов. И для каких-то очень важных узлов и конструктивных систем использование дорогих сталей оправдано.
Условный предел — текучесть
Диаграмма растяжения пластичного металла ( а и диаграммы условных напряжений пластичного ( б и хрупкого ( в металлов. Диаграмма истинных напряжений ( штриховая линия дана для сравнения. |
Условный предел текучести — это напряжение, которому соответствует пластическая деформация 0 2 %; его обозначают ( 70 2 — Физический предел текучести стт определяют по диаграмме растяжения, когда на ней имеется площадка текучести.
Условный предел текучести — напряжение, при котором остаточное удлинение достигает 0 2 % длины участка образца, удлинение которого принимается в расчет при определении указанной характеристики.
Кривая растяжения углеродистой стали с площадкой текучести ( а и без нее ( б. |
Условный предел текучести и временное сопротивление разрыву ( предел прочности) являются сдаточными характеристиками сталей.
Условный предел текучести обозначается через а02 и а08 в зависимости от принятой величины допуска на остаточную деформацию. Индекс 0 2 обычно в обозначениях предела текучести опускается. Если необходимо отличить предел текучести на растяжение от предела текучести на сжатие, то в обозначение вводится дополнительный индекс р или с соответственно растяжению или сжатию. Таким образом, для предела текучести получаем обозначения отр и стс.
Условный предел текучести cr0i2 кгс / мм2 ( н / м2) — напряжение, при котором остаточное удлинение достигает 0 2 % от расчетной длины образца.
Условный предел текучести определяют также для легированной стали и для ковкого чугуна. С повышением содержания углерода прочность стали повышается, а ее пластичность падает. Это хорошо видно из представленных на рис. 2.46 диаграмм растяжения для качественной конструкционной углеродистой стали нескольких марок.
Условный предел текучести a0i2 является напряжением, при котором остаточное удлинение образца составляет 0 2 % его начальной длины.
Условный предел текучести — растягивающая нагрузка, при которой остаточное удлинение образца составляет 0 2 % его первоначальной расчетной длины.
Условный предел текучести ст0 2 определяется графическим способом. Для этого значения полного и остаточного удлинений откладываются в прямоугольных координатах в зависимости от соответствующих ступеней нагружения. В результате получаются схематически показанные на рис. 27 кривые. На расстоянии 0 2 % остаточного удлинения проводится прямая, параллельная прямой Гука.
Условный предел текучести определяют также для легированной стали и для ковкого чугуна. С повышением содержания углерода прочность стали повышается, а ее пластичность падает. Это хорошо видно из представленных на рис. 2.44 диаграмм растяжения для качественной конструкционной углеродистой стали нескольких марок.
Условный предел текучести определяют также для легированной стали и ковкого чугуна. С повышением содержания углерода прочность стали повышается, а ее пластичность падает. Это хорошо видно из представленных на рис. 2.41 диаграмм растяжения, для качественной конструкционной углеродистой стали нескольких марок.
Условный предел текучести а 2 широко применяют в расчетах на прочность. При дальнейшем нагружении пластическая деформация все больше увеличивает-ся, равномерно распределяясь по всему объему образца. В точке В нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование шейки — сужения попе — f речного сечения, деформация из равно — 54 диаграмма истинных мерной переходит в местную.
Диаграмма истинных МврНОЙ ПврвХОДИТ В МбСТНуЮ. — Напряжение ( S и условных ( о напряжений в материале В ЭТОТ МОМ6НТ ИСПЫТЗНИЯ НЗЗЫ. |
Каким образом производится испытание на прочность?
Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.
Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.
Предел прочности сталей
В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.
Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.
Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):
- Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
- Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
- Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.
Категории прочности сталей
Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.
Значение термина
Предел прочности материала при растяжении сокращённо обозначается ПП. Также допускается использовать выражение «временное сопротивление». Для обозначения предела прочности применяют буквы R или σ В (сигма). Единица измерения — мегапаскаль (МПа). Показатель означает допустимую величину силы, которая может воздействовать на объект до того, как он начнёт разрушаться. Речь идёт о механическом воздействии, но следует учитывать, что химические факторы способны изменить первоначальные свойства материала, в том числе повлиять на ПП. К немеханическим нагрузкам относят следующие:
- нагревание;
- охлаждение;
- погодные условия (ветер, осадки, влажность);
- агрессивная среда.
Формула предела прочности при растяжении записывается так: R=0,64 (P/F), где F — площадь поверхности раскола предмета, а P — разрушающая нагрузка. При проектировании нельзя опираться на крайние значения, поэтому инженеры оставляют допуски на различные факторы, а также на период эксплуатации. Это значит, что при строительстве используется материал, у которого ПП превышает расчётное напряжение.
Изначально способность элемента выдерживать нагрузки определяли опытным путём. Материал использовали, не зная, как он себя поведёт во время эксплуатации, а после поломки заменяли более прочным. Со временем перешли к экспериментам и испытаниям, и по-прежнему самый точный способ найти предел прочности при натяжении и разрыве остаётся эмпирический.
Сначала закреплённый элемент растягивают. Он становится длиннее, при этом в одном месте образуется перешеек, и именно здесь заготовка разорвётся. Так ведут себя не все материалы, а только вязкие. Чугун, сталь и другие хрупкие сплавы растягиваются незначительно. При увеличении нагрузки они трескаются и разрушаются по наклонным плоскостям. Шейки не образуются.
Второй способ — математический анализ. Он заключается в том, что прочность определяют с помощью сложных вычислений. Однако без испытаний данные, полученные расчётным путём, нельзя считать полными. Дело в том, что на практике вещество может повести себя по-другому.