Волоконно-оптические линии связи
Содержание:
- Волоконные световоды
- Первое знакомство с новой технологией
- Оптоволоконный передатчик
- Оптоволоконный интернет – надежный, высокоскоростной, современный
- Ограничения оптоволокна
- Разница между многомодовым и одномодовым волокном простым языком
- Последовательность операций в рабочем цикле
- Показатели скорости прохода данных оптоволоконному кабелю по одному волокну
- Прокладка оптоволокна на местности
- Области применения
- Кварцевое одномодовое волокно
- Особенности организации оптоволоконной локальной сети
- Что такое оптоволоконный кабель?
- Грамотная эксплуатация сварочного аппарата
- Дисперсия[править]
Волоконные световоды
Независимо от разнообразия конструкций кабелей их основной элемент — оптическое волокно — существует лишь в двух основных модификациях: многомодовое (для передачи на расстояния примерно до 10 км) и одномодовое (для больших расстояний). Применяемое в телекоммуникациях оптоволокно обычно выпускается в двух типоразмерах, отличающихся диаметром сердцевины: 50 и 62,5 мкм. Внешний диаметр в обоих случаях составляет 125 мкм, для обоих типоразмеров используются одни и те же разъемы. Одномодовое оптоволокно выпускается только одного типоразмера: диаметр сердцевины 8-10 мкм, внешний диаметр 125 мкм. Разъемы для многомодовых и одномодовых световодов, несмотря на внешнее сходство, не взаимозаменяемы.
Рис. 3. Прохождение света через оптоволокно со ступенчатым и плавным профилем показателя преломления
На рис. 3 показано устройство двух типов оптоволокна — со ступенчатой и с плавной зависимостью показателя преломления от радиуса (профилем).
Волокно со ступенчатым профилем состоит из сердцевины из сверхчистого стекла, окруженной обычным стеклом с более высоким показателем преломления. При таком сочетании свет, распространяясь по волокну, непрерывно отражается от границы двух стекол, примерно как теннисный шарик, запущенный в трубу. В световоде с плавным профилем показателя преломления, который целиком изготовлен из сверхчистого стекла, свет распространяется не с резким, а с постепенным изменением направления, как в толстой линзе. В оптоволокне обоих типов свет надежно заперт и выходит из него только на дальнем конце.
Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света. На 850 нм (свет с такой длиной волны в основном применяется в системах передачи на небольшие расстояния) потери в обычном оптоволокне составляют 4-5 дБ на километр кабеля. На 1300 нм потери снижаются до 3 дБ/км, а на 1550 нм — до величины порядка 1 дБ. Свет с двумя последними длинами волн используется для передачи данных на большие расстояния.
Потери, о которых только что было сказано, не зависят от частоты передаваемого сигнала (скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от частоты сигнала и связана с существованием множества путей распространения света в световоде. Рис. 4 поясняет механизм возникновения таких потерь в оптоволокне со ступенчатым профилем показателя преломления.
Рис. 4. Различные пути распространения света в оптоволокне
Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света.
Луч, вошедший в оптоволокно почти параллельно его оси, проходит меньший путь, чем тот, который испытывает многократные отражения, поэтому свету для достижения дальнего конца световода требуется разное время. Из-за этого световые импульсы с малой длительностью нарастания и спада, обычно используемые для передачи данных, на выходе из оптоволокна размываются, что ограничивает максимальную частоту их следования. Влияние этого эффекта выражается в мегагерцах полосы пропускания кабеля на километр его длины. Стандартное волокно с диаметром сердцевины 62,5 мкм (многократно превышающим длину волны света) имеет максимальную частоту 160 МГц на 1 км на длине волны 850 нм и 500 МГц на 1 км при 1300 нм. Одномодовое волокно с более тонкой сердцевиной (8 мкм) обеспечивает максимальную частоту в тысячи мегагерц на 1 км. Однако для большинства низкочастотных систем максимальное расстояние передачи в основном ограничивается все же поглощением света, а не эффектом размывания импульсов.
Первое знакомство с новой технологией
Полтора десятка лет назад на подстанцию 330 кВ, где я работал, пришло новое оборудование, осуществляющее регистрацию и обработку информации электрических сигналов от сети очень большего количества датчиков, расположенных в разных местах — регистратор «Парма».
Это обыкновенный компьютер со своим программным обеспечением, выполняющий чисто электротехнические задачи.
Его монтаж, подключение и наладка были поручены нам за исключением сборки и настройки оптоволоконных магистралей. Опыта работы с ними мы не имели.
До этого момента связь с этими датчиками происходила по обычным электрическим цепям, которые называют вторичными. Однако целая группа этих устройств находилась на большом удалении. Проект предусматривал обмен информацией с ними по оптоволоконному кабелю. Его внутрь кабельного канала мы укладывали сами, а подключением и проверкой занимался приехавший из Санкт Петербурга представитель производителя.
Именно тогда стало понятно, что без специализированного оборудования и должных навыков работать с оптоволокном нельзя. Своими руками с ним ничего сделать невозможно.
Конструкция оптоволоконного кабеля
Передача информации происходит по оптическим магистралям, состоящим из отдельных носителей, объединённых в общую конструкцию — кабель оптоволокна.
Принцип работы оптического носителя
Обмен информацией происходит за счет прохождения света лазера от встроенного светодиода. Его передача осуществляется импульсами двоичного кода в одном направлении. Поэтому для обмена сведениями создано сразу два индивидуальных канала.
О конструкции кабеля
Стекло относится к хрупким материалам. Его можно легко разбить, а оптоволокно работает за счет использования стеклянных волокон. Понятно, что они требуют надежной защиты как от механических повреждений, так и от потерь световой энергии.
С этой целью оптические носители разными способами объединяют в жесткие модули и создают из них оптоволоконный кабель. Он может быть разной конструкции. Одна из них показана на схеме.
У нас на подстанции были использованы два вида кабеля: один диаметром 6 мм, а второй толщиной указательного пальца руки.
Довольно подробно вопрос этой технологии изложен в видеоролике GalileoRU «Оптоволокно».
Оптоволоконный передатчик
В первоначальных ВОЛС использовались большие лазеры, сегодня можно использовать различные полупроводниковые устройства. Чаще всего используются светоизлучающие диоды, светодиоды и полупроводниковые лазерные диоды.
Самым простым передающим устройством является светодиод. Его главное преимущество заключается в дешевизне. Однако у них есть ряд недостатков. Во-первых, они имеют очень низкий уровень эффективности. Только около 1% мощности поступает в оптическое волокно, а это означает, что потребуются драйверы высокой мощности для обеспечения достаточного количества света для передачи на большие расстояния.
Второй недостаток светодиода в излучении некогерентного света широкого спектра 30–60 нм. Из-за этого дисперсия в волокне ограничивает предел пропускной способности волоконного световода.
Волоконные светодиоды используются для локальных сетей, где скорость передачи данных в диапазоне 10–100 Мбит/с, а расстояние передачи несколько километров.
Оптоволоконная связь на большие расстояния с более высокими скоростями передачи данных, потребует большей производительности источника света. В этих системах используют лазеры. Хотя они более дорогие, они обладают существенными преимуществами.
Во-первых, они могут обеспечить более высокий выходной уровень;
Во-вторых, световой поток является направленным, что обеспечивает гораздо более высокую эффективность передачи света в оптоволоконный кабель. Эффективность связи с одномодовым волокном может достигать 50%.
В-третьих, лазеры имеют очень узкую спектральную полосу пропускания, то есть они производят когерентный свет. Эта узкая спектральная ширина позволяет лазерам передавать данные с гораздо большей скоростью, поскольку модальная дисперсия менее заметна.
Для очень высоких скоростей передачи данных или очень больших расстояний более эффективно использовать лазер с постоянным уровнем выходной мощности (непрерывной волной). Затем свет модулируется с помощью внешнего устройства. Использования внешних средств модуляции увеличивает максимальное расстояние между линиями связи, поскольку устраняется эффект, известный как лазерный «чирп». Этот эффект расширяет спектр светового сигнала и увеличивает хроматическую дисперсию в оптоволоконном кабеле.
Оптоволоконная связь и оптический кабель
По сути, оптоволоконный кабель состоит из сердечника, вокруг которого находится еще один слой, называемый оболочкой. Снаружи есть защитное внешнее покрытие.
Оптические кабели работают, потому что их оболочка имеет намного меньший показатель преломления, чем у сердечника. Это означает, что свет, проходящий по сердцевине, подвергается полному внутреннему отражению, когда достигает границы сердцевина-оболочка. То есть отражаясь свет движется внутри сердцевины оптического волокна.
Усилители (репитеры)
Есть ограничения в расстояние передачи сигналов по оптоволоконным кабелям. Это ограничивается связаны с затуханием сигнала и искажением светового сигнала вдоль кабеля. Чтобы преодолеть эти эффекты и передавать сигналы на большие расстояния (например, между городами), используются повторители и усилители сигналов.
Часто используют фотоэлектрические повторители. Эти устройства преобразуют оптический сигнал в электрический формат, где его можно обработать, чтобы сигнал не искажался, а затем преобразовать обратно в оптический формат.
Альтернативный подход — использовать оптический усилитель (эрбиевые 1,55мкм, иттербиевые 1 мкм, тулиевые 2 и 1,47 мкм). Эти усилители напрямую усиливают оптический сигнал без необходимости преобразовывать сигнал обратно в электрический формат.
Ввиду гораздо более низкой стоимости ВОУ по сравнению с повторителями, они используются гораздо чаще.
Оптоволоконная связь и приемники
Свет, распространяющийся по оптоволоконному кабелю, необходимо преобразовать в электрический сигнал, чтобы его можно было обработать и извлечь передаваемые данные. Компонент, который лежит в основе приемника, — это детектор (фотодетектор).
Обычно это полупроводниковое устройство с pn-переходом, штыревым фотодиодом или лавинным фотодиодом. Фототранзисторы не используются, потому что они не имеют достаточного быстродействия.
После того как оптический сигнал от оптоволоконного кабеля был подан на детектор и преобразован в электрический формат, он может быть обработан для восстановления данных, которые затем могут быть переданы в конечный пункт назначения.
Оптоволоконный интернет – надежный, высокоскоростной, современный
Волоконный интернет во многом превосходит традиционные каналы . Какие характеристики делают волоконную оптику наиболее привлекательным предложением?
Сверхскорость
Сверхбыстрая загрузка данных является важнейшим преимуществом оптических кабелей. Отправка больших вложений, просмотр 4K фильмов или высококачественных видеозвонков никогда не было таким быстрым и удобным.
Стабильность
Оптоволоконное соединение всегда остается на том же уровне, а скорость интернета чувствуется всеми пользователями одинаково, независимо от того, сколько людей пользуются Wi-Fi в любой момент времени.
Надежность
Сигнал подается через оптоволокно всегда на одном уровне — на его качество не влияют электромагнитные помехи или неблагоприятные погодные условия, такие как порывистый ветер, метели или сильные .
Безупречный
Оптоволоконный интернет безупречен, и это потому, что сигнал, передаваемый между отправителем и приемником, не проходит через какие-либо дополнительные устройства, такие как усилители сигнала. Таким образом, расстояние, которое должен пройти оптический сигнал, сокращено до минимума.
Современность
Оптоволокно — это одно из самых последних и современных технологических открытий, которое постоянно развивается. Благодаря оптоволоконным кабелям пользователи могут загрузить несколько гигабайтных файлов за несколько секунд или посмотреть фильм 4K качества, не беспокоясь о том, что каждые несколько минут он будет кэшироваться.
Развитие
Волоконная оптика — это проект с огромным потенциалом. Его быстрое развитие позволит огромному числу людей пользоваться преимуществами интернета со .
Волоконная оптика — это технология будущего. Ее непрерывное развитие является предвестником изменений, которые происходят не только в интернете, но и в традиционных средствах массовой информации, таких как телевидение, телефония и радио.
Ограничения оптоволокна
Есть и некоторые минусы технологии. Одной из причин, по которой такой вид проводов не является общедоступным, становятся затраты на его прокладку. Это не выгодно, когда уже есть готовые телефонные линии. Большинство людей, получающих интернет в 20-100 Мбит/с вполне довольны скоростью. Волокно работает оптимальнее, чем медь или алюминий, но из-за нагрузок на сервера пользователь часто просто не увидит разницы между ними. Например, приложение, загружающее большой файл на компьютер, может доставить его за считанные секунды при быстром соединении, но из-за ограничения на самих серверах софта эта цифра будет ограничена.
Разница между многомодовым и одномодовым волокном простым языком
В чем разница одномодовый и многомодовый кабель.
В данной статье я попытаюсь разъяснить простым языком, в чем разница между многомодовым и о одноммодовым волокном. Работая долгие годы в этой сфере, столкнулся с тем то что не каждый монтажник, занимающийся прокладкой оптического кабеля, может разобраться в тонкостях данной темы.
Итак, начнем.
В чем же основное различие, все очень просто, из самого названия многомодовый или одноммодовым кабель. Что такое (мод) – световой импульс, который движется по оптоволоконому кабелю оп оптического передатчика к приемнику. Вот получается, что в одномодовом один (мод) – световой импульс, а в многомодовом их несколько. И тут возникает мысль, зачем же использовать одномод, если в многомоде с большее количество (модов) идущих по одному волокну, наверно и скорость выше. Нет это не так. Многомодовый кабель, был создан для удешевления, стоимости оптического оборудования оборудования. Так как для передачи светового сигнала, достаточно недорогого оптического модуля, роль излучателя в котором, исполняет диод, а не дорогостоящий лазер.
Одномодовый оптический кабель – обладает диаметром сердечника от 8,3 до 10 микрон и поддерживает передачу только одного импульса (мода). Для сравнения толщина человеческого волоса в микронах колеблется в пределах от 50 до120 микрон. Следовательно, внутренний диаметр волокна 5 раз тоньше самого тонкого человеческого волоса. По такой жиле световой импульс может передаваться на расстояние в 240 км, на скорости передачи данных в 155Мбит/с без использования оптических повторителей. В одномодовом оптическом кабеле используются длина волны сетевого потока 1310 или 1550 нанометров, это зависит от типа оптического лазера. Одномод очень привередлив к качеству сварки, особенно это будет зависит от длинны оптоволоконной линии. Читайте в разделе сварка оптоволокна. На сегодняшний день, возможно получить стабильные 100Гбит/с, до 40 километров по одной жиле, при этом используются не стандартные коэффициенты длинны волны от 1295.56/1300.05 1304.58 до 1309.14 нанометров.
Многомодовый оптический кабель — обладает диаметром сердечника от 50 до 100 микрон и поддерживает передачу нескольких импульсов (мода) одновременно. Типичные диаметры сердечника многомодового волокна 50, 62,5, и 100 микрометров. В большинстве случаем данный кабель используется для построение локальных сетей, из невысокой стоимость оптических модулей с применение диода. Способность многомодового кабеля передать до 10 Гигабит в секунду на расстояние до 200 метров. В многоводовом оптическом кабеле используются длина волны сетевого потока 850 до 1300 нанометров. Раз
Многомодовое оптическое волокно делится на два типа передачи импульса, ступенчатое и градиентное.
Градиентное оптоволокно, имеет более низкий показатель дисперсии импульса, что дает более высокие показатели пропускной способности.
Читайте так же дополнительную информацию, в разделе сварка оптоволокна.
Последовательность операций в рабочем цикле
Прибор для качественной пайки оптоволокна необходимо выбирать, исходя из особенностей материала, навыков оператора и необходимой точности соединения. Сращивание оптического волокна проводится по установленному алгоритму действий:
- Установка термоусадочной гильзы на один из краев световодов.
- Подготовка соединяемых участков к термическому воздействию.
- Размещение волокон в направляющий аппарат.
- Юстировка в горизонтальной и вертикальной плоскостях.
- Сварка световодов.
- Анализ качества сварного шва.
- Защита места воздействия термоусаживающей гильзой.
- Проведение тестов соединения.
Показатели скорости прохода данных оптоволоконному кабелю по одному волокну
Мы не будем рассматривать частные случаи, получения максимальных скоростей и описывать новую технологию передачи данных по одному волокну потоком данных до 26 Тбит/с. Как как данная технология является экспериментальной и оборудование, на котором был поставлен эксперимент группой немецких инженеров во главе профессором Вольфгангом Фройде, не доступно в обычной продаже.
Факторы влияния на показатели скорости прохода данных оптоволоконному кабелю
Межмодовая, поляризационная или хроматическая дисперсия является настоящим барьером для пропускной способности оптоволоконного кабеля. Чем больше длинная волоконно-оптического кабеля, тем больше пагубное влияние эффектов на скорость передачи данных.
Для начала давайте разберемся что такое дисперсия.
Дисперсия от лат. dispersio (рассеивание). Простым языком это диапазон значений
случайной величины относительно её математического ожидания.
Типы оптоволоконной дисперсии
Межмодовая дисперсия простым языком — изменение длин светового импульса при прохождении через оптоволокно, когда вся энергия не достигает конца оптоволокна одновременно.
Расширение импульса в многомодовом оптоволокне
Хроматическая дисперсия простым языком — влияние суммарной скорости прохождения световых импульсов от разности длины волны передаваемого сигнала.
Поляризационная модовая дисперсия простым языком- это разница времени отражения импульса сигнала, из-за изменения геометрических характеристик симметрии волокна.
Факторы появления поляризационной модовой дисперсии в одномодовом волокне.
- механических натяжение оптических волокон (встречается в оптическом кабеле натянутые между опорами)
- термическое воздействие на оптические волокон (при нарушении условий эксплуатации и монтажа волоконно-оптических линий связи)
- деформационное воздействие на оптические волокон (при нарушении условий монтажа ВОЛС в грунт)
- скручивая с изменением геометрических характеристик волокон (нарушение условий сварки оптики и правил монтажа в муфту или оптический кросс)
Прокладка оптоволокна на местности
Чтобы проложить оптоволокно на местности, применяют механизированную укладку в грунт. Сама работа выполняется несколькими тракторами, которые сцепляются цугом. Они тянут специальный плуг, закрепленный на кабелеукладчике. Предварительно плуг углубляют в землю на полтора метра. На самом кабелеукладчике, представляющем собой небольшую тележку, закреплена катушка. Она при ручном кручении и подает кабель в траншею, которую прорывает плуг в движении.
Поверх волоконно-оптического кабеля на небольшой слой земли укладывают заметную и яркую сигнальную ленту. После укладки сразу же происходит ее засыпка землей. На поверхности грунта в итоге остается небольшое углубление около 20-30 сантиметров.
Важно! Через некоторое время все неровности рельефа сравниваются с помощью ножа бульдозера от легкого трактора. В теплое время года такая прокладка зарастает травой, но ее легко можно обнаружить с помощью заранее установленных столбиков
Области применения
Первое, что приходит на ум при упоминании волоконно-оптического кабеля, — Интернет. Все известные провайдеры заменили свои медные коммуникации на высокоскоростную оптику. Это позволило увеличить пропускную способность канала, необходимую для передачи интернет-трафика, организации IP-телефонии, телевидения и выделенных сервисов.
В целом, при помощи ВОК построена вся Мировая Паутина. Ее сети тянутся от берегов США по всему земному шару в виде подводных коммуникаций. Хрупкий кабель защищен толстостенной изоляцией, а укладывается он при помощи специальных кораблей под грунтом на самом дне океана.
Данная технология обретает все большую популярность и в построении локальных сетей. Особенно это касается загородных домов, где нет доступа к сети крупных провайдеров. Существует практика возведения вышек с пушками Wi-Fi, от которых тянется оптика до частных владений, позволяя таким образом подключиться к Интернету вдали от города.
Помимо этого, оптоволокно применяется в следующих сферах:
- промышленные системы управления;
- авиационные системы;
- военные системы командования, управления и связи;
- датчики – оптика может использоваться для доставки света от удаленного источника к датчику для получения информации о давлении, температуре или другой информации;
- подача энергии – оптические волокна могут обеспечивать исключительно высокий уровень мощности для таких задач, как лазерная резка, сварка, маркировка и сверление;
- освещение – пучок волокон, собранных вместе с источником света на одном конце, может освещать труднодоступные области – например, внутри человеческого тела, в сочетании с эндоскопом. Также их можно использовать как выставочную вывеску или декоративную подсветку.
Кварцевое одномодовое волокно
В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).
Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).
Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.
В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.
Тип волокна | Описание | Применение |
---|---|---|
G.652. Одномодовое волокно с несмещенной дисперсией | Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). | Стандартные области применения. |
G.653. Одномодовое волокно с нулевой смещенной дисперсией | Точка нулевой дисперсии смещена на длину волны 1550 нм. | Передача на длине волны 1550 нм. |
G.654. Одномодовое волокно со смещенной длиной волны отсечки | Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. | Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели. |
G.655. Одномодовое волокно с ненулевой смещенной дисперсией | Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). | Линии передачи со спектральным уплотнением каналов (DWDM). |
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи | Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. | Линии передачи со спектральным уплотнением каналов (CWDM/DWDM). |
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе | Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. | Для прокладывания в ограниченном пространстве. |
Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.
Особенности организации оптоволоконной локальной сети
Понимая, как организована и как работает такая сеть, проще понять, что вас ждет при ее эксплуатации и как быстрее решить все возникающие вопросы. В том числе — с подключением бытовой аппаратуры.
Ваше мнение — WiFi вреден?
Да
22.92%
Нет
77.08%
Проголосовало: 27924
Активное оборудование устанавливается только на стороне провайдера и пользователя. К одному волокну можно подключить до 128 приемников. Сеть устроена по принципу древесной кроны: основной ствол, от которого отходят ветви первого порядка, они делятся на участки второго порядка и так далее.
При подключении к одному оптоволокну ряда абонентских устройств, они получают сетевой доступ по очереди, в зависимости от заданного приоритета (впрочем, это никак не влияет на скорость передачи данных, так как линии обладают очень высокой пропускной способностью).
Для ветвления волокна на участки первого, второго и других порядков используются специальные модули — сплиттеры. Они не требуют электопитания и по устройству довольно просты.
Таким образом, схему «доставки» интернета в ваш дом можно описать так:
- у интернет-провайдера есть оптический линейный терминал, с которого производится раздача;
- сигнал идет через сплитеры по разветвленным кабельным оптоволоконным линиям до пользовательской точки;
- пользовательской точкой считается оптическая сетевая единица (иначе оптический терминал, оптический модем) — отдельное устройство, которое устанавливается в доме абонента;
- к оптической сетевой единице подключаются пользовательские устройства — маршрутизаторы — Wi-Fi роутеры, телевизоры, ПК или ноутбуки, телефонные аппараты и так далее.
Подключение пользовательских устройств к оптической единице выполняется стандартными кабелями – патч-кордами или отрезками специального кабеля. Они обжимаются разъемами того типа, который соответствует разъему подключенного пользовательского устройства.
Таким образом, самыми сложными задачами при подключении оптоволокна к Wi-Fi роутеру являются:
- прокладка оптоволокна до здания (помещения);
- установка распределительной оптической коробки в распредщите здания;
- прокладка оптоволоконного кабеля от распредкоробки до оптической розетки;
- установка оптического модема (оптической сетевой единицы) и подключение его к розетке оптическим патч-кордом.
Что же касается непосредственно подключения Wi-Fi роутера к оптоволоконной линии — как вы уже поняли, она производится с помощью обычного обжатого кабеля «витая пара» или патч-корда, который вставляется в соответствующие гнезда в оптическом модеме и роутере. Далее можно включать питание и настраивать раздачу.
Не помогло
Что такое оптоволоконный кабель?
Изделие представляет собой уникальный тип проводов. Оптоволоконный кабель – это линия, в которой информацию передают не через электрический сигнал, а световой. Главная деталь – стекловолокно, где и происходит движение света с небольшим ослаблением. Оптоволоконный кабель отличается прекрасными характеристиками защиты от перебоев и секретности информации, которая по нему проходит.
Практически никакие помехи электромагнитного вида не могут повредить световой сигнал. Провести несанкционированную прослушку с помощью подключения к оптоволоконному кабелю невозможно. Ведь для этого нужно будет разрушить целостность изделия. В настоящее время цена регулярно снижается, и провода становятся более доступными для большего количества людей.
https://youtube.com/watch?v=IJTc2rqHVUY%250D
Как выглядит оптоволоконный кабель?
Разновидностей структур множество, поэтому разберем, из чего состоит оптоволоконный кабель усредненного вида:
- Осевой элемент. Представляет собой стеклопластиковый пруток с или без оболочки. Главное назначение – придание жесткости.
- Волокно. Состоит из большого количества нитей, имеющих толщину в 125 мк. Они включают сердечник и стеклянную оболочку с лаковым покрытием. Число волокон может быть в пределах 4-288 шт.
- Модули из пластика для волокон. Это оболочки, включающие пучки нитей и смазку. В проводе может находиться одна или несколько туб.
- Пленка с гелем и оболочка из полиэтилена. Представляют собой части доп. защиты от трения и влаги. Пленка на оптоволоконном кабеле может быть на поверхности армирована нитями.
- Броня. Выглядит как сплетение нитей, кольца из проволок или листа гофрированной стали.
- Внешняя оболочка. Важная защита, которая оберегает кабель от всех нагрузок.
Как работает оптоволоконный кабель?
Уже упоминалось, что данные передаются благодаря движению света, что отражается в принципе работы оптоволоконного кабеля. Выглядит это так: электрический сигнал движется через специальный конвертер и становится световым лучом. Каждая жила напоминает стеклянную нить в зеркальной трубе. Свет попадания в нее отражается от стыка грани и двигается дальше. В конце «этого путешествия» он принимается устройством и перекодируется в электрический сигнал.
Где используется оптоволоконный кабель?
Этот вид используется во многих сферах промышленности и быта. Благодаря тому, что он является диэлектриком, он полностью безопасный во время передачи данных на разных производствах, даже взрывоопасных. По этой же причине происходит только минимальное накопление статического электричества. Оптоволоконный кабель для интернета и других потребностей может быть уложен в воду, землю и даже агрессивную среду. В качестве передающейся информации могут использоваться такие данные:
- телефонные;
- телевизионные;
- интернет.
Грамотная эксплуатация сварочного аппарата
Сварка оптического волокна должна выполняться строго под наблюдением специалиста, так как сложность работы на оборудовании данного типа достаточно высока. Процесс сваривания световодов включает в себя следующие этапы.
1. Разделывание оптического кабеля.
2. Очистка волокна.
3. Продевания оптоволокна через специальные защитные гильзы.
4. Скалывание (должно выполняться строго перпендикулярно по отношению к оси).
5. Края оптического кабеля нужно поместить в специальные зажимы.
6. Совместить края волокна под микроскопом.
7. Начать процесс сваривания.
Каждый этап должен выполняться строго специалистом, обладающим нужными знаниями и имеющим должный опыт. Ни в коем случае нельзя выполнять задачу самостоятельно.
Дисперсия[править]
Другой фактор, который искажает сигнал во время передачи — дисперсия, которая уменьшает эффективную пропускную способность передачи. Основные типы дисперсии: модовая дисперсия, хроматическая дисперсия, и поляризационная дисперсия.
Хроматическая дисперсияправить
Волны с разной длиной волны перемещаются с разной скоростью.
Разный показатель преломления для разных длин волн.
⇒ разная скорость.
Поляризационная дисперсияправить
Волны с разной поляризацией перемещаются с разной скоростью.
Многие кристаллы пропускают свет с разной поляризацией по-разному: разная степень затухания и разная скорость.
Модальная дисперсияправить
Разные моды волны перемещаются с разной скоростью.
Мощный уровень и маленькая эффективная область волокна, вызывают нелинейные эффекты. С увеличением уровня мощности и числа оптических каналов, нелинейные эффекты могут стать проблемным фактором в системах передачи. Аналоговые эффекты могут быть разделены на две категории