Огнестойкость металла и железобетона

Содержание:

Направления использования

Цемент жаростойкий можно применять для самых различных работ в сфере строительства. Однако из-за высокой стоимости его принято использовать для возведения построек и конструкций, находящихся под воздействием высокой температуры. Подобное решение особенно востребовано для промышленных помещений и частных домов.


Список основных сфер использования выглядит следующим образом:

  1. Организация монолитной футеровки при проведении ремонтных и восстановительных работ с тепловым и плавильным оборудованием, которое эксплуатируется в температурном режиме до +1600°C.
  2. Обустройство конструкций из железобетона, устойчивых к высокому нагреву.
  3. Производство блоков и кирпичей с огнеупорными характеристиками.
  4. Изготовление раствора для кирпичной кладки и обмазки банных печей.
  5. Создание клеевых основ для нефтеперерабатывающей промышленности.
  6. Возведение печей для производства стекла.
  7. Сооружение каминов и печей для жилых объектов.
  8. Монтаж систем дымоотвода.

Жаростойкие смеси необходимы и для горной или металлургической сферы деятельности. Еще они незаменимы для обустройства тоннелей, подложек и прочих конструкций, подвергающихся усиленному нагреву.

Способы повышение огнестойкости домов из древесины

Независимо от того, насколько велика огнестойкость сруба по действующим сегодня нормативным и законодательным документам, вполне логичным является желание любого его владельца повысить уровень пожарной безопасности. Возможности сегодняшнего рынка строительных материалов предоставляют широкий выбор различных огнезащитных материалов. Наиболее часто применяются три варианта выполнения подобных работ:

  • С использованием лакокрасочных огнезащитных составов. Простой и эффективный вариант защитной обработки, который одновременно позволяет создать красивое декоративное покрытие деревянных поверхностей. При этом в большинстве случае текстура и цвет древесины сохраняется. Лакокрасочные составы применяются, главным образом, для покрытия небольших конструкций и внутренних работ;
  • С применением терморасширяющихся или вспучивающихся составов. Данный тип материалов обеспечивает более высокий уровень огнестойкости. Это достигается созданием при нагревании толстого защитного слоя, в течение длительного времени оберегающего древесины от воздействия огня;
  • При помощи огнезащитных конструкций. Не менее распространенный вариант, который предусматривает создание изоляции деревянных поверхностей при помощи различного вида штукатурок, разнообразных облицовочных материалов, мастик или паст, являющихся негорючими материалами.

Соблюдение требований пожарной безопасности в отечественном частном домостроении практически никогда серьезно не контролировалось. Однако, владелец сруба из бревна или бруса сам должен быть заинтересован в том, чтобы обеспечить максимально безопасные условия собственного проживания. И выполнение различных видов огнезащиты является обязательным условием для этого. Сделать подобные работы эффективными поможет консультация у квалифицированного специалиста, который с легкостью подберет наиболее подходящий материал из множества представленных на рынке.

27/12/2017

При оценивании противопожарных характеристик (свойств) различных зданий или построек особое внимание уделяется учету степени огнестойкости. Под огнестойкостью подразумевается функциональная способность конструктивных составляющих сооружений подавлять распространение огня, не теряя при этом своих эксплуатационных характеристик

К таким свойствам относят несущую и ограждающую способности. Рассмотрим эти понятия подробнее.

Сложности и ошибки в процессе создания

Наиболее часто при установке противопожарных перекрытий допускаются такие ошибки:

  • при проектировании и выборе предельно-допустимого показателя REI для конкретного вида здания;
  • при производстве плиты перекрытия, с установкой некачественных исходных материалов;
  • при транспортировке плит, когда повреждены их поверхности;
  • при монтаже, когда нарушена плотность соединений и примыкания к огнезащитным стенам;
  • при устройстве дополнительной огневой защите, когда нарушена технология, допущены ошибки очередности защитных слоев или применен некачественный исходный материал.

Их последствия и способы устранения


Пожарная статистика подтверждает, что отсутствие либо ошибочная установка таких противопожарных конструкций приводит к увеличению скорости распространения огня. В такой ситуации пожарным отрядам будет трудно локализовать очаг возгорания. Поэтому повышается риск обрушения всех конструкций.

Неправильно выполненная защита и установка перекрытий приводит к тому что они быстро разогреваются, деформируются, пропуская через себя огонь, и сами превращаются в источник тепловой энергии.

Для исправления ошибок, допущенных при установке противопожарных перекрытий потребуется выполнить комплексное обследования состояния плит перекрытия с разработкой мероприятий по их устранению:

  • повышение показателя REI, можно достигнуть путем установки дополнительных слоев защиты на существующих перекрытиях по потолку или полу;
  • испорченные плиты перекрытия при установке выбраковываются при строительстве, благодаря организации оперативного контроля за качеством;
  • нарушена плотность соединений и примыкания к огнезащитным стенам восстанавливается применением огнезащитных минерально-волокнистых вставок или заделкой швов цементным раствором не менее 2 см, чтобы минимизировать возможность прохождения дымовых газов на остальные этажи.

Огнестойкость зданий и сооружений

Любые постройки и сооружения можно разделить на три вида:

  • сгораемые;
  • плохо или трудно сгораемые;
  • несгораемые.

Деление является достаточно условным, учитывая, что чаще всего капитальные объекты сооружены с применением различных материалов. Причиной разнородности сооружений является широкая линейка используемых конструктивных элементов. Как правило, при строительстве применяется и дерево, и полимеры, и бетон, и множество других составов. Для определения степени огневой стойкости сооружения необходимо сделать соответствующий расчет. В его основе заложено время, проходящее от начала воздействия пламени до появления в стенах здания повреждений либо разрушения. Для совершения расчетных действий необходимо учитывать следующие дефекты сооружения:

  • температура стены, противоположной той, на которую воздействует пламя, поднялась до 160-190°С, то же правило распространяется и на другие конструкции здания;
  • возникают сквозные разрушения в виде трещин и мелких проемов, способствующих проникновению огня в расположения, не затронутые пожаром;
  • идет процесс деформации несущих конструкций сооружения, прежде всего, изготовленных из металла, этот процесс ведет к разрушению здания.

✎ Степень огнестойкости кирпичного здания

Несмотря на то, что капитальная стена, сделанная из кирпича, сгорает за 5 часов, что на час превышает огнестойкость бетонной, кирпичное здание относится ко 2 классу. Таким образом, и бетон, и кирпич соседствуют в одной группе. В этот же класс входят и сооружения, построенные с применением металлических элементов.

✎ Степень огнестойкости деревянного здания

В зависимости от технологических особенностей и способов возведения деревянного здания оно может относиться к различным категориям огнестойкости в пределах своего 3 или 4 класса. В этом классе имеется несколько подгрупп. Это основная, соответствующая классу 3, а также 3б. Различие определяется технологиями строительства и особенностями применения материалов.

✎ Степень огнестойкости здания из сэндвич-панелей

Постройки из сэндвич-панелей имеют класс сопротивляемости возгоранию 3а. При этом нужно учитывать, что на этот показатель серьезно влияют индивидуальные характеристики тех или иных панелей. Все они отличаются друг от друга по материалу наполнения, прочности внешней оболочки, особенностям конструкции. Более полную информацию приводит сам производитель в техническом паспорте изделия и непосредственно на поверхности материала.

Показатели огнестойкости автоклавного газобетона

Какую температуру выдерживает газоблок, если в соответствии с ГОСТ 30244-94 он относится к группе несгораемых стройматериалов и классу негорючих? Согласно госстандарту стеновые материалы относятся к негорючим, когда в процессе проведения испытаний сочетают 3 параметра:

  • прирост температуры при горении не более 50 ℃
  • потеря массы испытуемых образцов не превышает 50%;
  • продолжительность устойчивого горения открытым пламенем не превышает 10 сек.

Противопожарные технические характеристики автоклавного газобетона:

Характеристика Значение
Огнестойкость REI 180…240
Класс горючести НГ (негорючий)
Предельная температура до разрушения +700 ℃
Выделение едкого дыма нет
Выделение токсинов при горении нет
Класс опасности конструкций из г/б К0 (пожаробезопасные)

Как определяется и отчего зависит


Предельное значение огнестойкости определяется как временной промежуток, в течение которого обследуемое сооружение разрушается настолько, что все основные показатели материала, используемого для его изготовления, достигают своих предельных значений. К числу обозначаемых таким способом технических характеристик принято относить:

  • несущую способность отдельных элементов и всего строительного объекта в целом;
  • теплоизоляционные характеристики входящих в состав конструкции материалов;
  • способность к сохранению конструктивной целостности в условиях воздействия открытого пламени.

Все перечисленные параметры строго нормируются и измеряются в удобных для хронометража технических единицах (обычно – в минутах или часах).

Для производственных строений (СП 31-03-2001 года) этот показатель определяется в зависимости от присвоенной им категории по пожарной опасности (А, Б, В, Г, Д). Указанное соотношение хорошо видно из таблицы.

Это интересно: Вредный производственный фактор

Расшифровка

По длительности противодействия разрушениям во время пожара всем известным видам сооружений и их конструктивным элементам присваиваются обозначения «R», «E» и «I», которые расшифровываются следующим образом:

  • «R» – время, по истечении которого конструкция полностью теряет свои несущие способности;
  • «E» – временной интервал, необходимый для нарушения целостности сооружения;
  • «I» – период, за который теплоизоляционные свойства строения снижаются до критически опасного значения.

Для элементов конструкций, не относящихся к разряду несущих, могут вводиться смешанные состояния (под аббревиатурой REI60 или RE30, например).

Как определяется?

Степень огнестойкости – представитель наиболее значимых параметров сооружения, не уступающий в важности особенностям конструкции с точки зрения пожаробезопасности и функциональным характеристикам

Но на что обратить внимание для того, чтобы ее определить с предельной точностью? Для этого нужно рассмотреть такие параметры сооружения:

  • Этажность.
  • Реальная площадь сооружения.
  • Характер назначения здания: промышленное, жилое, коммерческое и др.

Но наибольшее значение при определении степени огнестойкости здания имеют качественные показатели и степень воспламеняемости материалов, которые использовались для сооружения конкретного объекта.
Требуемые пределы огнестойкости

Для точного определения существуют специальные нормы и документы (СнИП). Совокупность нормативных актов разделяет все сооружения на 5 степеней огнестойкости сооружений.

Первая степень

В эту группу входят объекты, особенности которых позволяют понести минимальный ущерб при возникновении пожара. Такого эффекта разрешает добиться специальное конструирование сооружения, предотвращающее распространение огня по всей конструкции в случае, если было возгорание. Высокой пожароустойчивостью обладают объекты при сооружении которых большую часть используемых материалов составил железобетон или камень – они максимально устойчивы к огню и практически не поддаются его влиянию.

Категория сооружений ВыС0та

сооружения.

см

Степень

огнестой­кости

Класс пожароопасности сооружения S этажа, см2. в рамках пожарного отсека зданий
С 1 этажом С 2 этажами С 3 этажами
А. Б 3600 I Со Без ограничений 520000 350000
А 3600 II Со Не о гр. 520000 350000
2400 III Со 780000 350000 260000
IV Со 350000
Б 3600 II Со Без ограничений 1040000 780000
2400 III Со 780000 350000 260000
IV Со 350000
В 4800 I, II Со Без ограничений 2500000 1040000
2400 III Со 2500000 1040000 520000
1800 III Со, С1 2500000 1040000
1800 IV С2, С3 260000 200000
1200 V Не норм. 120000 60000
Г 5400 I. II Со Без ограничений
3600 III Со Без ограничений 2500000 1040000
3000 III Со Без ограничений 1040000 780000
2400 IV Со Без ограничений 1040000 520000
1800 IV С1 650000 520000
Д 5400 I. II Со Без ограничений
3600 III Со Без ограничений 5000000 1500000
3000 С1 Без ограничений 2500000 1040000
2400 IV Со, С1 Без ограничений 2500000 780000
1800 IV С2, С3 1040000 780000
1200 V Не норм. 260000 150000

СНиП 31-03-2001

Вторая степень

В категорию включаются объекты с аналогичными первой группе особенностями, за исключением момента, что некоторые части конструкции сооружения, выполненные из стали, не имеют огнеупорной защиты.

Третья степень

Представители 3 степени сооружаются с несгораемых, трудносгораемых элементов или сгораемых материалов при условии, что последние обработаны средствами для повышения степени огнестойкости.

Четвертая степень

Здания четвертой степени должны иметь противопожарные стены, которые не подвержены воздействию огня, что будет способствовать задержке огня в пределах определенной площади, предотвращая распространение по всему зданию. Но оставшаяся часть конструкции строения должна сооружаться из трудносгораемых материалов.

Пятая степень

Степень огнестойкости здания таких объектов находится на предельно низком уровне. При строительстве таких объектов допускается использовать материалов, которые способны к сгоранию. Единственное исключение, которое также касается предыдущей категории, – сооружение несущей стены из несгораемых материалов.

Для определения степени огнестойкости (I, II и др.) нужно определяться исключительно на нормативные документы и приведенной в СнИП. Также для таких целей и проектирования высотных сооружений используют ДБН 1.1-7-2002, для определения пожаробезопасности многоэтажных сооружений используют 4 ДБН В.2.2-15-2005, а для ознакомления с требованиями пожаробезопасности к сооружениям с большим количеством этажей применяют 9 ДБН В.2.2-24:2009. Только использование специальной документации позволит получить наиболее полную информацию о степенях огнестойкости зданий с разными конструктивными особенностями.

Какие изменения могут быть при нагревании

Огнестойкость стены из газобетонных блоков достаточно высокая, а что происходит с материалом, если пожар все же случился? Какую температуру выдерживает газобетонный блок и как меняются его свойства под действием огня? Об этом можно судить по данным лабораторных испытаний, проведенных по ГОСТ 30244-94. Итак, при нагревании газоблока в его структуре происходят изменения:

  • +100 С. Повышается прочность до 2 МПа, при этом объем, масса, цвет и прочие характеристики остаются неизменными. Именно при такой температуре получают автоклавный газобетон.
  • +300 С. Прочность незначительно снижается — до 1.8 МПа, что выше, чем до нагревания. Масса уменьшается на 2%. Цвет блоков изменяется — становится более темным. Повреждения на поверхности отсутствуют.
  • +500 С. Прочность уменьшается до 1.6 МПа, масса — на 4%. Материал приобретает серый цвет, но видимых повреждений не наблюдается.
  • +700 С. Прочность составляет 90% от номинальной — 1.6 МПа, масса меньше первоначальной на 6%. Блоки имеют темно серый цвет, на поверхности заметны трещины глубиной до 3 мм.
  • +900 С. Прочность падает до 1.2 Мпа, что на 7% ниже исходной. Масса материала снижается на 7%, блоки уменьшаются в объеме на 10%. Цвет материала — светло серый, на поверхности много трещин глубиной до 10 мм.
  • +1000 С. Кладка из газоблоков разрушается. Прочность составляет 0 МПа. Цвет газобетона — ярко белый, поверхность имеет глубокие трещины.

Таким образом, отвечая на вопрос, какую температуру выдерживает газобетон, можно смело утверждать, что ячеистый материал способен противостоять температуре до +900 ℃. Если температура пожара составляла ниже +700 ℃, то газоблоки можно использовать повторно.

Действующая нормативная база

Степень огнестойкости деревянного дома – это способность постройки сохранять геометрические размеры, прочностные характеристики и основные функциональные возможности при воздействии пожара. Уровень этого параметра определяется промежутком времени, в течении которого здание удовлетворяет описанным выше условиям.

Сегодня существует сразу несколько нормативных документов, регулирующих сферу обеспечения пожарной безопасности в строительстве. К их числу относятся:

  • Федеральный закон №123-ФЗ, изданный достаточно давно — 22.07.2008 года. С тех пор он многократно корректировался, а последняя его редакция вступила в силу совсем недавно – 29.07.2017 г. Документ представляет собой Технический регламент, формулирующий требования пожбезопасности;
  • СНиП 21-01-97, в котором содержатся основные нормы и требования, связанные с обеспечением пожарной безопасности при возведении и эксплуатации здания и сооружений;
  • НБП 106-95. Ведомственный документ противопожарной службы МВД России, оставшийся актуальным после переподчинения ее подразделений МЧС. Он описывает противопожарные требования, касающиеся индивидуальных жилых домов.

Выше приведены только самые основные документы, связанные с вопросами строительства и эксплуатации различных зданий и сооружений, в том числе деревянных. Помимо указанных, существует еще достаточно большое количество законодательных и нормативных актов, разобраться в которых человеку, не имеющему юридическое образование достаточно сложно.

Термины и определения

Конструктивная огнезащита — способ огнезащиты строительных конструкций, основанный на создании на обогреваемой поверхности конструкции теплоизоляционного слоя средства огнезащиты. К конструктивной огнезащите относятся толстослойные напыляемые составы, огнезащитные обмазки, штукатурки, облицовка плитными, листовыми и другими огнезащитными материалами, в том числе на каркасе, с воздушными прослойками, а также комбинации данных материалов, в том числе с тонкослойными вспучивающимися покрытиями. Способ нанесения (крепления) огнезащиты должен соответствовать способу, описанному в протоколе испытаний на огнестойкость и в проекте огнезащиты.

Комбинированный способ огнезащитыОгнезащитная плитаОгнезащитаОгнезащитный составОгнезащитная эффективностьОгнезащитная обработкаОгнезащитное покрытиеОгнестойкость строительной конструкцииПредел огнестойкости конструкции (заполнения проемов противопожарных преград)Проект огнезащитыПриведенная толщина металлаСредство огнезащитыСтепень огнестойкости зданий, сооружений и пожарных отсековТонкослойное вспучивающееся огнезащитное покрытие (огнезащитная краска)Тонкослойное огнезащитное покрытие (вспучивающееся покрытие, краска)

Расчет фактического предела огнестойкости железобетонной плиты перекрытия

Расчет фактического предела огнестойкости железобетонных конструкций

Как правило, предел огнестойкости железобетонной конструкции достигается в результате потери ею несущей способности (обрушения) за счет снижения прочности (температурной ползучести) арматурной стали и бетона при нагревании — достижения первого предельного состояния по огнестойкости , либо вследствие потери (утраты) теплоизолирующей способности (прогрева конструкции выше допустимой температуры) — второе предельное состояние конструкции; по огнестойкости, а также в результате потери (утраты) сплошности (целостности, плотности ) ограждающей конструкции — третье предельное состояние конструкции по огнестойкости.

Для самонесущих и несущих железобетонных конструкций (конструкций наружных стен, плит покрытия, балок, ферм, колонн) пределы огнестойкости определяют по потере несущей способности.

При определений пределов огнестойкости строительных конструкций в общем случае необходимо решить две части задачи: теплотехническую и статическую. Теплотехническая часть имеет целью определить температуры по сечению конструкции во время воздействия на нее стандартного температурного режима.

В статической части вычисляют изменение несущей способности (прочности) нагретой конструкции с учетом изменения свойств бетона и арматуры при высоких температурах — общая расчетная схема. Затем строят график изменения несущей способности конструкции во времени. Время нагрева конструкции, по истечение которого несущая способность снизится до величины нормативной (рабочей) нагрузки, является пределом ее огнестойкости.

Для решения статической части задачи форму поперечного сечения железобетонной плиты перекрытия с круглыми пустотами (прил. 2 рис. 6.) приводим к расчетной тавровой.

Определим изгибающий момент в середине пролета от действия нормативной нагрузки и собственного веса плиты:

где q / n – нормативная нагрузка на 1 погонный метр плиты, равная:

Расстояние от нижней (обогреваемой) поверхности панели до оси рабочей арматуры составит:

где d – диаметр арматурных стержней, мм.

Среднее расстояние составит:

где А – площадь поперечного сечения арматурного стержня (п. 3.1.1. ), мм 2 .

Определим основные размеры расчетного таврового поперечного сечения панели:

— высота : hf = 0,5 (h — ÆП) = 0,5 (220 – 159) = 30,5 мм;

— расстояние от не обогреваемой поверхности конструкции до оси арматурного стержня ho = h – a = 220 – 15 = 205 мм.

Определяем прочностные и теплофизические характеристики бетона:

— нормативное сопротивление по пределу прочности Rbn = 11.0 МПа (табл. 12 или п. 3.2.1 для бетона класса В15);

— коэффициент надежности gb = 0,83 ;

— расчетное сопротивление бетона по пределу прочности Rbu = Rbn /gb = 11.0 / 0,83 = 13.3 МПа;

— коэффициент теплопроводности lt = 1,2 – 0,00035 Тср = 1,2 – 0,00035 723 = 0.95 Вт м -1 К -1 (п. 3.2.3. ),

где Тср – средняя температура при пожаре, равная 723 К;

— удельная теплоемкость Сt = 710 + 0,84 Тср = 710 + 0,84 · 723 = 1317.32 Дж кг -1 К -1 (п. 3.2.3. );

— приведенный коэффициент температуропроводности:

— коэффициенты, зависящие от средней плотности бетона К = 39 с 0,5 и К1 = 0,5 (п.3.2.8, п.3.2.9. ).

Определяем высоту сжатой зоны плиты:

Определяем напряжение в растянутой арматуре от внешней нагрузки:

так как хt = 1 мм 2 (п. 3.1.1. ).

Определим критическое значение коэффициента изменения прочности арматурной стали:

где Rsu – расчетное сопротивление арматуры по пределу прочности, равное:

Rsu = Rsn / gs = 590 / 0,9 = 665.56 МПа (здесь gs – коэффициент надежности для арматуры, принимаемый равным 0,9 );

Rsn – нормативное сопротивление арматуры по пределу прочности, равное 590 МПа (табл. 19 или п. 3.1.2 ).

По таблице п. 3.1.5. с помощью линейной интерполяции определяем, что для арматуры класса А-IV, марки стали 14 Г2 и gstcr = 0,65

Время прогрева арматуры до критической температуры для плиты сплошного поперечного сечения будет являться фактическим пределом огнестойкости.

где Х – аргумент функции ошибок Гаусса (Крампа), равный 0,64 (п.3.2.7. ) в зависимости от величины функции ошибок Гаусса (Крампа), равной:

(здесь tн – температура конструкции до пожара, принимаем равной 20°С).

Фактический предел огнестойкости плиты перекрытия с круглыми пустотами составит:

Пф = t × 0,9 = 0,78 × 0,9 = 0,702 ч,

где 0,9 – коэффициент, учитывающий наличие в плите пустот.

Так как бетон – негорючий материал, то, очевидно, фактический класс пожарной опасности конструкции К0.

188.64.169.166 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

Огнестойкость конструкций из железобетона

Огнестойкость конструкций из железобетона зависит от многих параметров:

  • Размеров сечения конструкции;
  • Толщины защитного слоя;
  • Диаметра и количество арматуры;
  • Нагрузки на конструкцию.

Горизонтально расположенные конструкции

К таким конструкциям относятся следующие виды изделий:

  • Настилы перекрытий и панели;
  • Балочные плиты;
  • Прогоны;
  • Балки и пр.

Кроме этого направляться подчернуть, что при однообразных параметрах, огнестойкость балок и плит различная, что связано с тем, что балки при пожаре разогреваются с трех сторон.

Тонкостенные изгибаемые конструкции смогут преждевременно разрушаться под действием пожара по косому сечению у опор. Такие разрушения предотвращают методом установки вертикальных каркасов длиной ? пролета на при опорных участках.

К изгибаемым тонкостенным конструкциям относятся:

  • Ребристые и пустотные панели;
  • Балки и ригели;
  • Настилы и пр.

Опертые по контуру плиты владеют значительно громадным пределом огнестойкости, чем изгибаемые элементы. Такие плиты армированы в двух направлениях, исходя из этого их огнестойкость зависит от соотношения длины арматуры в долгом и маленьком проемах.

Колонны

Огнестойкость таких конструкций как колонны кроме этого зависит от ряда факторов:

Кстати! Будет интересно узнать: Фундамент из блоков ФБС своими руками

Разрушение колонн под действием открытого огня происходит в следствии понижения прочности бетона и арматуры. Причем, внецентреннаянагрузка сокращает их огнестойкость.

Особенности реконструкции прослойки

В процессе эксплуатации строительные конструкции испытывают жесткие природные воздействия. Самые опасные из них – колебания температур и периодическое увлажнение внешней поверхности бетона. Поэтому защитный пласт, даже верно подобранный, постепенно может начать разрушаться. Трещины и отслоения со временем приводят к оголению арматурных стержней. Чтобы армирование могло выполнять свои функции на таких конструкциях необходимо восстановить прослойку.

Работы по реконструкции объекта начинаются с тщательного осмотра повреждений и проверки толщины имеющегося защитного пласта. Она измеряется специальным устройством, работа которого построена на магнитном принципе. Также выявляются причины возникновения повреждения и их степень. Ведь если глубинные слои элементов строения будут затронуты, то потребуется глобальное усиление прочности.

В простых случаях необходимо основательно заделать отдельные раковины, сколы и подобные дефекты поверхности. Такие ремонтные работы не требуют много времени и сил. Поврежденные участки подготавливают, убирая пыль, грязь и отслоившиеся частички. Затем зачищают трещины и щели сжатым воздухом, грунтуют подлежащую ремонту плоскость и все дефекты заполняются раствором. Серьезные трещины сшивают плоскими анкерами; они должны быть покрыты защитным слоем в 20 мм. Все работы проводят при благоприятных температурных режимах в сухую погоду.

При значительном отслоении защитной прослойки, изменении характеристик материалов и поражении арматурных прутков коррозией необходима полная замена пласта. Реконструкцию проводят следующим образом:

  1. аккуратно удаляют старый слой;
  2. арматуру очищают химическим способом или аппаратами высокого давления;
  3. прутки покрывают антикоррозийными составами;
  4. при необходимости восстановить прочность конструкции устанавливают стальные анкеры;
  5. старое основание очищают от загрязнений, пыли и насыщают водой;
  6. ремонтный раствор наносят торкретированием или набрызгом. При этом малейшие трещины, поры и впадины заполняются смесью. Толщина прослойки обычно составляет порядка 30 мм.

Если вертикальные участки незначительные, то используют нанесение смеси по принципу оштукатуривания. Горизонтальное основание восстанавливают методом обычной стяжки.

Как определяется и отчего зависит

Предельное значение огнестойкости определяется как временной промежуток, в течение которого обследуемое сооружение разрушается настолько, что все основные показатели материала, используемого для его изготовления, достигают своих предельных значений.

К числу обозначаемых таким способом технических характеристик принято относить:

  • несущую способность отдельных элементов и всего строительного объекта в целом;
  • теплоизоляционные характеристики входящих в состав конструкции материалов;
  • способность к сохранению конструктивной целостности в условиях воздействия открытого пламени.

Все перечисленные параметры строго нормируются и измеряются в удобных для хронометража технических единицах (обычно – в минутах или часах).

Для производственных строений (СП 31-03-2001 года) этот показатель определяется в зависимости от присвоенной им категории по пожарной опасности (А, Б, В, Г, Д). Указанное соотношение хорошо видно из таблицы.

Огнестойкие противопожарные бетоны

• от 250 до 350°С в бетоне образуются, в основном, трещины от температурной усадки бетона.

• до 450°С в бетоне образуются трещины преимущественно от разности температурных деформаций цементного камня и заполнителей.

• свыше 450°С происходит нарушение структуры бетона из-за дегидратации Са(ОН)2, когда свободная известь в цементном камне гасится влагой воздуха с увеличением объема.

• при температуре свыше 573°С наблюдается нарушение структуры бетона из-за модифицированного превращения α-кварца в β-кварц в граните с увеличением объема заполнителя.

• при температуре свыше 750°С структура бетона полностью разрушается.

На фотографии один из блоков тоннельной обделки, проходивший 90-минутные огневые испытания во ВНИИПО в 2017 г. Взрывообразное разрушение началось уже на 20-й минуте.

Такие же приблизительно результаты были и при отжиге блоков тоннельной обделки в МГСУ (Мытищи) в 2016 г.

Кратко ознакомиться с предлагаемыми технологиями (которые мы условно называем «огнестойкий бетон» или «пожаростойктй бетон») можно, нажав на ссылку ниже или в выпадающем менюв левой части основной страницы.

Как обозначается величина

Конечно, такая величина имеет свою маркировку.

В проектной и прочей документации разные показатели обозначаются буквенно-цифровыми символами.

Покажем, как выглядит маркировка величины у строительных конструкций.

  • (W) – достижение порогового значения плотности потока тепла на заданной дистанции от ненагреваемой поверхности объекта;
  • (I) – утрата теплоизоляционных свойств по причине повышения температуры до максимальной на ненагреваемой поверхности;
  • (E) – время, за которое нарушается целостность объекта;
  • (R ) – временной промежуток, за который объект утрачивает несущую способность.

Предельное значение огнеупорности для заполнения проемов специальных преград наступает в следующих случаях.

  • достижение предела плотности потока тепла (W) либо дымо- , газонепроницаемости (S);
  • утрате теплоизоляции (I);
  • утрате целостности (E).

Если время сопротивления огню у металла небольшое, то у него велика тепловая емкость и проводимость тепла.

Такой металл при пожаре не способен держать большую нагрузку.


Поэтому наступает предел по критерию утраты несущей способности (R ).

К ненесущим конструкциям объекта могут применяться смешанные обозначения (к примеру, маркировка RE30 либо REI60).

От чего зависит этот параметр

Пределы огнестойкости возводимых строений и готовых конструкций в первую очередь определяются используемыми при их постройке материалами. По этому признаку все оцениваемые объекты подразделяются на следующие категории:

  • типовые металлоконструкции;
  • деревянные сооружения;
  • бетонные (железобетонные) строения и объекты.

Для металлоконструкций, отличающихся наименьшей огнестойкостью, этот предел зависит от характерного размера используемого материала. Так, при толщине металлических элементов до 5 мм он составляет не более 9-ти минут, а при увеличении этого показателя до 15 мм – 18 минут.

Таблица 1. Зависимость огнестойкости металлоконструкций от толщины металла

Приведенная толщина, мм

Предел огнестойкости, мин.

3

5

5

9

10

15

15

18

20

21

30

27

Огнестойкость сооружений из дерева определяется структурой применяемого материала (клеёная или обычная древесина). Существует также большая зависимость от наличия специальных антипиреновых добавок, заметно повышающих время огневого разрушения.

Предел огнестойкости обычной древесины, представляемый как скорость обугливания на открытом огне, совсем невелик. В отличие от неё в сооружениях и объектах, изготовленных на основе клеёного дерева, этот показатель значительно лучше (порядка 30-45 минут).

Бетонные сооружения отличаются большим пределом огнестойкости, в конечном счёте, зависящим от толщины бетонного слоя и особенностей изготовленных на его основе объектов. В дополнительной огнезащите чаще всего нуждаются следующие элементы:

  • ребристые плиты с большим количеством конструктивных пустот;
  • панели с тонкими стенками;
  • армированные снаружи заготовки.

Рассмотренные материалы по-разному проявляют себя в условиях непосредственного воздействия открытого огня. Так, в древесине, например, в этом случае преобладают процессы, связанные с термическим разложением их структуры (с образованием пористого кокса). Фактически это разложение означает снижение прочностных показателей изготавливаемой на основе древесины конструкции.

Металлические структуры при сильном нагревании приобретают характерное для них пластичное состояние, а в бетонных образованиях в процессе обезвоживания наблюдается снижение прочностных свойств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector