Нейтронная бомба: история и принцип работы

История

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 1144 дня].

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

Миф 4: у нейтронной бомбы высокая продолжительность радиоактивного излучения

Когда-то Айзек Азимов назвал нейтронную бомбукапиталистическим оружием» — оно, мол, уничтожает людей, но заботится о материальной собственности. Ну кто же выберет машины вместо людей? Только негодяй‑буржуй.

Нейтронная бомба уничтожает только жизнь, а не собственность»

Создатели бомбы уверяли правительство США, что у неё есть одно железобетонное преимущество: она не вызывает долговременного радиоактивного заражения местности. Дескать, через сутки армия может без последствий занимать зачищенную территорию.

Испытания и расчёты показали, что, в отличие от любого другого атомного оружия, нейтронная бомба действительно практически не загрязняет территорию. В том смысле, что железные конструкции будут не сильнофонить» какое-то время и радиоактивное заражение местности можно легко дезактивировать по ходу боёв — а не через несколько лет(а то и десятков лет), как при взрыве водородной бомбы.

Первые испытания бомбы

Испытание атомной бомбы, взрыв

Ядерная программа США получила название «Манхэттенский проект». Действовать начала с 17 сентября 1943 года. Первые испытания атомной бомбы в рамках данной программы прошли 16 июля 1945 года под кодовым названием «Тринити».

24 сентября 1951 года были проведены испытания РДС-2. Их уже можно было доставить до точек запуска так, чтобы они доставали до США. 18 октября была испытана РДС-3, доставляемая бомбардировщиком.

Дальнейшие испытания перешли к термоядерному синтезу. Первые испытания подобной бомбы в США прошли 1 ноября 1952 года. В СССР такая боеголовка была испытана уже через 8 месяцев.

Преимущества современных трансформаторов

В современном мире все со временем только совершенствуется. Хотя за основу берутся открытия, которые имеют многовековую историю. Это же касается и современных трансформаторов. Чтобы понять, в чем состоят главные преимущества обозначенного устройства, следует отметить несколько значимых фактов:

  1. Первые трансформаторы были достаточно увесистые, а сейчас они могут весить меньше 100 граммов.
  2. Раньше обозначенные устройства имели значительные габариты. Современные трансформаторы некоторых типов могут свободно поместиться в ладошке.
  3. Изначально происходила большая потеря электроэнергии, сейчас же можно ее экономить.
  4. На текущее время преобразовательное устройство тока может использоваться в различных бытовых и промышленных оборудованиях.
  5. Совершенствование технологий позволяет экономить на материалах для изготовления трансформаторов.
  6. Долговечность современных устройств.
  7. В силу увеличения потребляемой энергии из-за развития разного рода производства можно сделать преобразовательные устройства различных размеров, даже самых огромных

Одним из немаловажных показателей считается то, что современные трансформаторы отличаются от своих предшественников малым количеством выбросов парниковых газов.

В завершение непременно нужно сказать, что благодаря изобретению трансформатора можно быть уверенным, что оборудование, которое потребляет электроэнергию, будет работать, согласно требуемого ему напряжению. Все дело в том, что подаваемое исходное напряжение превышает, то, которое требуется разным электроприборам.

История[править | править код]

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 1144 дня].

Конец монополии

Точное время проведения испытаний ученые рассчитали таким образом, чтобы ветер унес образовавшееся в результате взрыва радиоактивное облако в сторону малообитаемых территорий, и воздействие вредных осадков на людей и домашний скот оказалось минимальным. В результате таких вычислений исторический взрыв наметили на утро 29 августа 1949 года.

–– На юге вспыхнуло зарево и появился красный полукруг, похожий на взошедшее солнце, –– вспоминает Николай Власов. –– А через три минуты после того, как зарево угасло, а облако растворилось в предрассветной дымке, до нас дошел раскатистый грохот взрыва, похожий на отдаленный гром могучей грозы.

Взрыв атомной бомбы РДС-1. 29 августа 1949 года

Приехав на место срабатывания РДС-1, (см. справку) ученые могли оценить все разрушения, которые за ним последовали. По их словам, от центральной башни не осталось никаких следов, стены ближайших домов рухнули, а вода в бассейне полностью испарилась от высокой температуры.

Но эти разрушения, как это ни парадоксально, помогли установить глобальное равновесие в мире. Создание первой советской атомной бомбы положило конец монополии США на ядерное оружие. Это позволило установить паритет стратегических вооружений, который до сих пор удерживает страны от военного применения оружия, способного уничтожить всю цивилизацию.

Александр Колдобский, заместитель директора Института международных отношений НИЯУ «МИФИ», ветеран атомной энергетики и промышленности:

Принцип действия боеприпасов объемного взрыва

Вакуумные бомбы или боеприпасы объемного взрыва (или объемно-детонирующие боеприпасы) – это тип боеприпасов, который работает на принципе создания объемного взрыва, известного человечеству уже многие сотни лет.

Человек очень давно познакомился с явлением объемного взрыва. Подобные взрывы довольно часто случались на мукомольных производствах, где в воздухе скапливалась мельчайшая мучная пыль или на сахарных заводах. Еще большую опасность представляют собой подобные взрывы в угольных шахтах. Объемные взрывы являются одной из самых страшных опасностей, которые подстерегают шахтеров под землей. В плохо вентилируемых забоях скапливается угольная пыль и газ метан. Для инициации мощнейшего взрыва в таких условиях достаточно даже небольшой искры.

Типичным примером объемного взрыва является подрыв бытового газа в помещении.

Физический принцип действия, по которому работает вакуумная бомба, довольно прост. Обычно в нем используют взрывчатое вещество с низкой температурой кипения, которое легко переходит в газообразное состояние даже при низких температурах (например, окись ацетилена). Для создания искусственного объемного взрыва нужно просто создать облако из смеси воздуха и горючего материала и поджечь его. Но просто это только в теории – на практике этот процесс довольно сложен.

В центре боеприпаса объемного взрыва находится небольшой подрывной заряд, состоящий из обычного взрывчатого вещества (ВВ). В его функции входит распыление основного заряда, который быстро превращается в газ или аэрозоль и вступает в реакцию с кислородом воздуха. Именно последний играет роль окислителя, поэтому вакуумная бомба в несколько раз мощнее обычной, имеющей такую же массу.

Задачей подрывного заряда является равномерное распределение горючего газа или аэрозоля в пространстве. Затем в дело вступает второй заряд, который вызывает детонацию этого облака. Иногда используют несколько зарядов. Задержка между срабатываниями двух зарядов меньше одной секунды (150 мск).

Название «вакуумная бомба» не совсем точно отображает принцип действия этого оружия. Да, после подрыва подобной бомбы действительно происходит снижение давления, но ни о каком вакууме речь не идет. Вообще, боеприпасы объемного взрыва уже породили большое количество мифов.

В качестве взрывчатого вещества в объемных боеприпасах обычно используют различные жидкости (окиси этилена и пропилена, диметилацетилен, пропилнитрит), а также порошки легких металлов (чаще всего магний).

Конструкция и принцип действия нейтронной бомбы

Нейтронная бомба – это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения. При ее взрыве 25% энергии выделяется в виде быстрых нейтронов (1-14 МэВ), остальная часть расходуется на образование ударной волны и светового излучения.

К первому типу относятся маломощные (до 1 кт) заряды весом до 50 кг, которые используются в качестве боеприпасов к безоткатному или артиллерийскому орудию («Дэви Крокет»). В центральной части бомбы располагается полый шар из делящегося вещества. Внутри его полости находится «бустинг», состоящий из дейтерий-тритиевой смеси, усиливающий деление. Снаружи шар экранирован бериллиевым отражателем нейтронов.

Реакция термоядерного синтеза в таком снаряде запускается разогревом действующего вещества до миллиона градусов путем подрыва атомной взрывчатки, внутри которой помещен шар. При этом испускаются быстрые нейтроны с энергией 1-2 МэВ и гамма-кванты.

Второй тип нейтронного заряда используется в основном в крылатых ракетах или авиабомбах. По своей конструкции он не сильно отличается от «Дэви Крокета». Шар с «бустингом» вместо бериллиевого отражателя окружен небольшим слоем из дейтерий-тритиевой смеси.

Также существует и другой тип конструкции, когда дейтерий-тритиевая смесь выведена наружу атомной взрывчатки. При взрыве заряда запускается термоядерная реакция с выделением нейтронов высокой энергии 14 МэВ, проникающая способность которых выше, чем у нейтронов, образующихся при ядерном делении.

Т.е. поглощенный живыми тканями нейтронный поток в 10 рад соответствует полученной дозе гамма-излучения в 70 рад. Объяснить это можно тем, что при попадании в клетку нейтрон выбивает ядра атомов и запускает процесс разрушения молекулярных связей с образованием свободных радикалов (ионизация). Почти сразу радикалы начинают хаотично вступать в химические реакции, нарушая работу биологических систем организма.

Еще одним поражающим фактором при взрыве нейтронной бомбы является наведенная радиоактивность. Возникает при воздействии нейтронного излучения на почву, строения, военную технику, различные объекты в зоне взрыва. При захвате нейтронов веществом (особенно металлами) происходит частичное преобразование стабильных ядер в радиоактивные изотопы (активация). Они в течении некоторого времени испускают собственное ядерное излучение, которое также становится опасным для живой силы противника.

Из-за этого боевая техника, орудия, танки, подвергшиеся излучению, не могут быть использованы по назначению от пары дней до нескольких лет. Вот почему остро встала проблема по созданию защиты экипажа техники от нейтронного потока.

Увеличение толщины брони военной техники почти не влияет на проникающую способность нейтронов. Улучшение защиты экипажа удалось достичь путем использования в конструкции брони многослойных поглощающих покрытий на основе соединений бора, установкой алюминиевого подбоя с водородосодержащим слоем пенополиуретана, а также изготовлением брони из хорошо очищенных металлов или металлов, которые при облучении не создают наведенную радиоактивность (марганец, молибден, цирконий, свинец, обедненный уран).

Но нейтронные заряды полезны в ближнем космосе. В связи с отсутствием там воздуха нейтронный поток распространяется на большие расстояния. Т.е. данный тип оружия является эффективным средством ПРО.

Так, при взаимодействии нейтронов с материалом корпуса ракеты создается наведенная радиация, которая приводит к повреждению электронной начинки ракеты, а также к частичной детонации атомного запала с началом реакции деления. Выделяющееся радиоактивное излучение позволяет демаскировать боеголовку, отсеяв ложные цели.

Закатом нейтронного оружия стал 1992 год. В СССР, а затем и России был разработан гениальный по своей простоте и эффективности способ защиты ракет – в состав материала корпуса ввели бор и обедненный уран. Поражающий фактор нейтронного излучения оказался бесполезен для вывода из строя ракетного вооружения.

Миф 1: нейтронная бомба уничтожает только людей

Так поначалу и думали. Технике и зданиям взрыв этой штуковины, по идее, не должен был нанести повреждений. Но только на бумаге.

На самом деле, как бы мы ни проектировали специальный атомный боеприпас, его детонация все равно породит ударную волну.

Отличие нейтронной бомбы в том, что на ударную волну приходится только 10-20 процентов выделяющейся энергии, в то время как у обычной атомной бомбы — 50 процентов.


Результаты испытаний нейтронной бомбы в Неваде

Взрывы нейтронных зарядов на полигоне в пустыне Невада в США показали, что в радиусе нескольких сот метров ударная волна сносит все здания и постройки.

Миф 2: чем мощнее нейтронная бомба, тем лучше

Первоначально нейтронную бомбу планировали наклепать в нескольких вариантах — от одной килотонны и выше. Однако расчёты и испытания показали, что делать бомбу больше одной килотонны не очень перспективно.

Всему виной физика бомбы. В отличие от атомной, у нейтронной основной поражающий элемент — нейтронное излучение. А оно быстро поглощается атмосферой. У поверхности земли через каждые 235 метров нейтроны теряют половину своей энергии. Значит, на расстоянии примерно в полтора-два километра их энергия уменьшится в 120-250 раз. В принципе, это и есть зона эффективного поражения нейтронной бомбы.

Из-за этого нейтронную бомбу(или боеприпас) считали тактическим ядерным оружием.

И поэтому основная масса произведённых бомб и боеприпасов имела мощность не более 10 кт, а чаще всего одну килотонну.

Впрочем, для незащищённого человека полтора километра хватит за глаза. В радиусе до 1,2 километра — гарантированная смерть в 90 процентах случаев.

В общем, надо было придумать, как защищаться от этой штуковины.

Как работает нейтронная бомба — особенности поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть энергии выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.

Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

Первые изобретения и возможность их применения в современном мире

Главным требованием к конструкции современной бомбы является обеспечение формирования сферической ударной волны при взрыве. Наглядным примером является ядерный заряд, конструкция которого состояла из плутониевого шара и 32 зарядов различных форм (12 пятигранных и 20 шестигранных). Сложность в достижении необходимых параметров вызывал разрыв по времени детонации и разброса. Такое расхождение составляло миллионную долю секунды. Для компенсации по времени и запуска использовалось электронное устройство весом около 200 кг.

Одним из первых известных человечеству приспособлений, которое приводило в действие боезаряд, является генератор Сахарова. Конструкция последнего состоит из кольца и медной катушки. Без такого генератора невозможно запустить электромагнитную бомбу. Принцип действия изобретения Сахарова следующий: детонаторы, подрывающиеся синхронно, инициируют детонацию, которая направляется к оси. В то же время происходит разряд конденсатора и формируется магнитное поле во внутренней части катушки. Из-за избыточного давления ударная волна замыкала сформировавшееся поле внутри приспособления.

Так как время действия ограничено, внутри генератора образовывался ток, который прекращал процесс излучения энергии. Такая причина привела к непригодности использования изобретения Сахарова для излучения электромагнитной энергии. Несмотря на этот факт, устройство можно использовать в мирных целях – для генерации импульсных токов.

Килотонная зажигалка

Начинается всё с первой ступени — так называемого триггера. Это простой атомный заряд(ну, может не совсем простой), а в нём уже всё стартует одновременным подрывом заряда обычной взрывчатки, хитрым образом обёрнутого вокруг делящегося вещества.

В древние времена атомной эры было важно, чтобы детонаторы сработали строго одновременно, с минимальным рассогласованием — в пределах десятков наносекунд. Иначе будет небольшой обычный взрыв с быстро погасшей ядерной реакцией(так называемаяшипучка»)

Он изгадит все окрестности впустую израсходованным плутонием и прочей радиоактивной поганью. В конце концов придумали хитрый вариант подрыва, так называемыйлебедь». В нём синхронность некритична, и можно не утыкивать всю поверхность детонаторами.

Схема водородной бомбы

Специально обученная взрывчатка взрывается и давит на тампер(толкатель — тяжёлую оболочку триггера). Онпадает» внутрь через пустоту, в центре которой, окружённое бериллиевым отражателем нейтронов, висит самое интересное: маленький шарик плутония-239. Тампер обжимает шарик, доводя давление до нескольких миллионов атмосфер, и переводит его в надкритическое состояние.

Внимание: с момента запуска детонаторов уже прошло несколько десятков микросекунд, а меж тем никакой ядерной реакции ещё нет. Но сейчас будет

Кино замедлилось окончательно, дальше всё пойдет значительно быстрее.

В момент обжатия плутониевого ядрышка срабатываетзапал»: стартовый источник начинает гнать в ядро нейтроны.

Вот она, отметканоль»: с этого момента и начинается всё веселье.

Пошли первые деления плутония, ещё под действием внешнего потока нейтронов. Несколько дополнительных наносекунд, и в толще плутония загуляла следующая волна нейтронов, ужесобственных».

Давление в центре уже шкалит за миллиард атмосфер, температура уверенно движется к 100 миллионам градусов Кельвина. А что происходит снаружи этого маленького шарика? Там же обычный взрыв вроде был? Так он и есть. Висит, извините за такой глагол, держит всю эту конструкцию через тампер, чтобы сразу никуда не убежало, но силы его на исходе.

Тут всё заканчивается: через одну десятимиллионную долю секунды с моментаноль»(0,1 микросекунды, но все цифры очень приблизительны) реакция в плутонии завершена.

Преимущества современных трансформаторов

В современном мире все со временем только совершенствуется. Хотя за основу берутся открытия, которые имеют многовековую историю. Это же касается и современных трансформаторов. Чтобы понять, в чем состоят главные преимущества обозначенного устройства, следует отметить несколько значимых фактов:

  1. Первые трансформаторы были достаточно увесистые, а сейчас они могут весить меньше 100 граммов.
  2. Раньше обозначенные устройства имели значительные габариты. Современные трансформаторы некоторых типов могут свободно поместиться в ладошке.
  3. Изначально происходила большая потеря электроэнергии, сейчас же можно ее экономить.
  4. На текущее время преобразовательное устройство тока может использоваться в различных бытовых и промышленных оборудованиях.
  5. Совершенствование технологий позволяет экономить на материалах для изготовления трансформаторов.
  6. Долговечность современных устройств.
  7. В силу увеличения потребляемой энергии из-за развития разного рода производства можно сделать преобразовательные устройства различных размеров, даже самых огромных

Одним из немаловажных показателей считается то, что современные трансформаторы отличаются от своих предшественников малым количеством выбросов парниковых газов.

В завершение непременно нужно сказать, что благодаря изобретению трансформатора можно быть уверенным, что оборудование, которое потребляет электроэнергию, будет работать, согласно требуемого ему напряжению. Все дело в том, что подаваемое исходное напряжение превышает, то, которое требуется разным электроприборам.

Темная сторона Луны

Многие люди наверняка слышали альбом «The Dark Side of the Moon» группы Pink Floyd, а сама идея о том, что у Луны есть темная сторона, стала очень популярной среди общества. Только вот дело в том, что у Луны нет никакой темной стороны. Это выражение является одним из самых распространенных заблуждений. И его причина связана с тем, как Луна оборачивается вокруг Земли, а также с тем, что Луна всегда повернута к нашей планете только одной стороной. Однако несмотря на то, что мы видим только одну ее сторону, мы часто становимся свидетелями того, что некоторые ее части становятся светлее, в то время как другие покрыты мраком. Учитывая это, логично было предположить, что то же правило было бы справедливо и для другой ее стороны.

Более правильным определением было бы «дальняя сторона Луны». И даже если мы ее не видим, она не всегда остается темной. Все дело в том, что источником свечения Луны на небе является не Земля, а Солнце. Даже если мы не видим другую сторону Луны, она тоже освещается Солнцем. Это происходит циклично, как и на Земле. Правда, цикл этот длится несколько дольше. Полный лунный день эквивалентен примерно двум земным неделям. Два интересных факта вдогонку. При лунных космических программах никогда не осуществлялась посадка на ту сторону Луны, которая всегда отвернута от Земли. Пилотируемые космические миссии никогда не осуществлялись во время ночного лунного цикла.

История создания ядерной бомбы

Макеты бомб «Малыш» и «Толстяк», сброшенных на японские города

Вопрос о том, кто изобрел ядерную бомбу, в истории не имеет однозначного ответа. Предпосылкой для работы над атомным оружием принято считать открытие радиоактивности урана. В 1896 году французский химик А. Беккерель открыл цепную реакцию данного элемента, положив начало разработкам в ядерной физике.

В следующее десятилетие были открыты альфа-, бета- и гамма-лучи, а также ряд радиоактивных изотопов некоторых химических элементов. Последовавшее открытие закона радиоактивного распада атома стало началом для изучения ядерной изометрии.

Однако немецкая ядерная программа была обречена на провал. Несмотря на успешное продвижение ученых, страна ввиду войны постоянно испытывала трудности с ресурсами, особенно с поставками тяжелой воды. На поздних этапах, исследования замедлялись постоянными эвакуациями. 23 апреля 1945 разработки немецких ученых были захвачены в Хайгерлохе и вывезены в США.

США стали первой страной, выразившей заинтересованность в новом изобретении. В 1941 году на его разработку и создание были выделены значительные средства. Первые испытания прошли 16 июля 1945 года. Меньше, чем через месяц, США впервые применили ядерное оружие, сбросив две бомбы на Хиросиму и Нагасаки.

Собственные исследования в области ядерной физики в СССР велись с 1918 года. Комиссия по атомному ядру была создана в 1938 году при Академии наук. Однако с началом войны ее деятельность в данном направлении была приостановлена.

В 1943 году сведения о научных трудах в ядерной физике были получены советскими разведчиками из Англии. Были внедрены агенты в несколько исследовательских центров США. Добываемые ими сведения позволили ускорить разработку собственного ядерного оружия.

Позже дата была перенесена на начало 1957 с учетом того, чтобы все страны НАТО могли подготовиться и включиться в войну. По данным западной разведки, испытание ядерного оружия в СССР могло быть проведено не раньше 1954 года.

Однако о подготовке США к войне стало известно заранее, что заставило советских ученых ускорить исследования. В короткие сроки они изобретают и создают собственную ядерную бомбу. 29 августа 1949 г. в Семипалатинске на полигоне испытана первая советская атомная бомба РДС-1 (реактивный двигатель специальный).

Подобные испытания сорвали план «Троян». С этого момента США перестали обладать монополией на ядерное оружие. Вне зависимости от силы упреждающего удара, оставался риск ответных действий, что грозило катастрофой. С этого момента самое страшное оружие стало гарантом мира между великими державами.

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

Япония не капитулирует

К моменту окончательного и успешного тестирования атомной бомбы советские войска и союзники окончательно разгромили фашистскую Германию. Однако оставалось одно государство, которое пообещало бороться до конца за господство в Тихом океане. С середины апреля по середину июля 1945 года японская армия неоднократно осуществляла авиационные удары по союзническим войскам, тем самым нанося большие потери армии США. В конце июля 1945 года милитаристское правительство Японии отклонило требование союзников о капитуляции согласно Потсдамской декларации. В ней, в частности, говорилось, что в случае неповиновения японскую армию ждёт быстрое и полное уничтожение.

Атомная бомба

Атомная бомба

или ядерная бомба относится к ядерному оружию. Механизм действия заключается в цепной ядерной реакции, которая становится неуправляемой и приводит к взрыву из-за переизбытка энергии, выделяемой при делении ядер.

По этой причине этот тип бомбы также называют бомбой деления. Слово «атомная» не совсем точное, так в механизме задействовано только ядро атома, участвует в делении его протоны и нейтроны, его субатомные частицы, а не атом в целом, его электроны не задействованы.

Материал, подвергающийся делению берут сверхкритической массы. Такое количество обеспечивает попадание выделяющихся нейтронов из делящихся ядер в соседние ядра, провоцируя их деление. Докритическую массу вещества провоцируют либо бомбардировкой другой докритической массы, либо непосредственно взрывчатым веществом, которое взрываясь сжимает исходный материал провоцируя начало цепной реакции.

Материал для атомной бомбы чаще всего состоит либо из обогащенного урана, либо плутония. Энергия, выделяющаяся от взрыва варьируется от тонны до 500 килотонн в тротиловом эквиваленте. Бомба также освобождает радиоактивные фрагменты, которые являются атомами тяжелых элементов. Именно они содержатся в радиоактивных осадках после взрыва.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector