Мощность насоса (напор): определение, формула, характеристики, единицы измерения
Содержание:
- Большая Энциклопедия Нефти и Газа
- Задачи на тему: Вязкость жидкостей
- Формула давления жидкости
- Рабочие характеристики
- Превышение давлением теплоносителя предельной величины
- Снижение давления теплоносителя ниже нормы – следствие его утечки
- Абсолютное давление = absolute pressure и приборное (избыточное) давление = gauge pessure. В частности — что такое psig и psia ? Единица давления psig и psia. Вариант для печати.
- Парообразование
- Сила тяжести
- Зависимость скорости от напора
- Физические свойства
- Кавитация насоса
- Давление газа
- Гидравлический пресс
- Как правильно подобрать манометр. Основные параметры. На что важно обратить внимание при покупке?
- Закон Паскаля
- Приборы для измерения давления
- Теплоноситель в статическом и динамическом состояниях
- Общая формула давления
Большая Энциклопедия Нефти и Газа
Основной закон гидростатики, согласно которому давление, создаваемое в любой точке покоящейся несжимаемой жидкости, одинаково во всех точках ее объема.
Основной закон гидростатики — это закон Паскаля, согласно которому в состоянии равновесия величина давления р в жидкости ( или газе) не зависит от ориентации площадки, на которую оно действует.
Основной закон гидростатики широко применяется для решения практических задач
Однако при его использовании в практических расчетах следует обращать особое внимание на высоту / г, так как она может принимать как положительные, так и отрицательные значения.
Кроме основных законов гидростатики Архимеда, Сте-вин формулирует еще два положения, касающиеся элементарных свойств несжимаемой тяжелой жидкости.
Как записывается основной закон гидростатики.
ПАСКАЛЯ ЗАКОН — основной закон гидростатики, согласно к-рому давление, производимое внешними силами на поверхность жидкости, передается одинаково по всем направлениям.
ПАСКАЛЯ ЗАКОН — основной закон гидростатики, согласно к-рому давление на поверхность жидкости, произведенное внеш.
Полученное уравнение называют основным законом гидростатики. Оно позволяет подсчитать давление в любой точке внутри покоящейся жидкости.
Это уравнение и выражает основной закон гидростатики.
При выборе знака в основном законе гидростатики всегда следует помнить, что чем ниже ( глубже) располагается точка в данной жидкости, тем больше давление в этой точке.
Гидравлический пресс.| Сосуды разной формы. |
Это и есть принцип Паскаля — основной закон гидростатики.
В заключение следует добавить, что основной закон гидростатики широко используется при измерении давлений.
Схема действия сил при прямолинейном движении сосуда. |
Эта зависимость является более общей, чем основной закон гидростатики, который может быть получен из нее как частный случай. Тогда с учетом 1 Низ (2.11) получим формулу (2.1), т.е. основной закон гидростатики.
Страницы: 1 2 3
Задачи на тему: Вязкость жидкостей
Задача №4.1.
Определить коэффициент кинематической вязкости нефти, если известно, что при температуре ее коэффициент динамической вязкости а плотность
Решение:
Коэффициент кинематической вязкости представляет собой отношение коэффициента динамической вязкости жидкости к ее плотности:
Задача №4.2.
Определить коэффициент динамической вязкости нефти с условной вязкостью 5 °ВУ, если плотность нефти равна
Решение:
Коэффициент кинематической вязкости по условной вязкости, заданной в градусах Энглера ( °ВУ), вычисляется по формуле:
Тогда коэффициент динамической вязкости нефти
Задача №4.3.
Определить кинематическую вязкость воды при температуре 40 °С.
Решение:
Кинематическая вязкость воды в зависимости от температуры может быть определена по эмпирической формуле Пуазейля:
где — температура в °С. Тогда при = 40 °С
Задача №4.4.
Определить кинематический коэффициент вязкости жидкости, если сила трения на поверхности создает скорость деформации
Решение:
Касательное напряжение на поверхности
Поскольку для ньютоновской жидкости
а градиент скорости
Кинематический коэффициент вязкости
Возможно эта страница вам будет полезна:
Примеры решения задач по гидравлике |
Задача №4.5.
Для большинства жидкостей зависимость динамического коэффициента вязкости от абсолютной температуры можно представить эмпирической формулой вида:
где коэффициенты и для данной жидкости имеют постоянное значение и определяются экспериментально. Установлено, что при динамический коэффициент нефти а при
Определить константы и и вычислить значение для этой нефти при
Решение:
Вязкости нефти при температурах и соответственно:
Разделив первую из этих зависимостей на вторую, получим:
Пролагорифмировав полученное выражение, будем иметь:
Откуда
Поскольку , то, подставив сюда полученное выражение для , запишем:
Подставим в полученные формулы численные значения вязкостей и температур и определим константы и для нефти:
Тогда динамическая вязкость этой нефти при температуре 25 °С
Задача №4.6
Определить силу трения и касательное напряжение на площадке при разности скоростей между соседними слоями воды толщиной равной . Динамическую вязкость принять равной
Решение:
Найдем градиент скорости в направлении :
Определим силу трения между слоями по формуле Ньютона:
Вычислим касательное напряжение:
Формула давления жидкости
Формула, по которой можно посчитать давление жидкости:
\
\( P \left(\text{Па}\right) \) – давление жидкости;
\( \displaystyle \rho_{\text{ж}} \left(\frac{\text{кг}}{\text{м}^3} \right) \) – плотность жидкости;
\( \displaystyle g \left(\frac{\text{м}}{c^{2}} \right) \) – ускорение свободного падения;
Для большинства школьных задач можно принимать \( \displaystyle g \approx 10 \left(\frac{\text{м}}{c^{2}} \right) \);
\( h \left(\text{м}\right) \) – высота столбика жидкости.
В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.
Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.
В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.
Рабочие характеристики
Показатели рабочих характеристик насоса определяются кривой. Она обозначает зависимость подачи и напора насоса. Соприкасаются эти два измерения в одной точке. Если посмотреть на график выше, можно определить понятие рабочей точки.
Она представляет собой пересечение гидравлической характеристики сети и напора. Также на графике отображается области устойчивой работы оборудования. Выходящий над точкой соприкосновения отрезок Q-H определяет зону неустойчивой работы агрегата. На этом отрезке вероятны срывы в работе. При нулевой подаче воды включается мощность холостого хода.
Превышение давлением теплоносителя предельной величины
Если процесс эксплуатации сопровождается частыми «подрывами» предохранительного клапана, следует проанализировать возможные причины происходящего:
- заниженная емкость расширительного бачка;
- завышенное настроечное давление газа/воздуха в бачке;
- неправильно выбрано место установки.
Наличие бачка емкостью от 10 % полной емкости системы отопления является практически стопроцентной гарантией исключения первой причины. Впрочем 10 % не являются минимально возможной емкостью. Грамотно спроектированная система может нормально работать и при меньшей величине. Однако определить достаточность емкости бачка сможет только специалист, владеющий методикой соответствующего расчета.
Вторая и третья причины тесно взаимосвязаны между собой. Предположим, что воздух/газ накачан до 1,5 бара, а место установки бачка выбрано вверху системы, где рабочее давление, допустим, всегда ниже 0,5 бара. Газ всегда будет занимать весь объем бачка, а расширяющийся теплоноситель останется снаружи. Внизу системы теплоноситель будет давить на трубы теплообменника котла особенно сильно. Регулярный «подрыв» предохранительного клапана будет обеспечен!
Снижение давления теплоносителя ниже нормы – следствие его утечки
Если значение величины, показываемое при отсутствии циркуляции, снизилось от 0,02 бара, причем давление газа в расширительном бачке нормальное, можно начинать искать утечки жидкости. Хорошо, если они визуально проявляются. Малозаметные мелкие утечки выявляют путем пневмоиспытаний системы. Закачав внутрь сжатый воздух, ожидают появления шипения (свиста) в местах разгерметизации. Обычно они наблюдаются в местах соединений трубопроводов с элементами арматуры и отопительными приборами.Хорошей профилактикой появлению утечек теплоносителя является опрессовка системы. Так именуются гидроиспытания повышенным давлением. Для заполнения системы водой используется ручной насос, позволяющий плавно поднимать его величину. Подняв ее до определенного уровня, делают паузу на полчаса, контролируя показания манометра. Спад первоначального значения – явный признак утечки, которую вновь ищут визуально или на слух, проводя пневмоиспытания.
Технология проведения опрессовки.
Технологии проведения ремонтов систем отопления постоянно развиваются. Относительно недавно в России получил распространение метод устранения утечек в трубопроводных системах, включая отопительные, основанный на добавлении внутрь системы (посредством насоса) жидкого герметика. Растворяясь в объеме теплоносителя, герметик в местах утечек реагирует с воздухом, образуя прочный уплотняющий слой, ликвидируя любые течи за 1-7 дней (срок определяется размерами дефектов). Соотношение герметик/теплоноситель для продукта германской марки BCG равно 1:100. Поэтому ремонт системы емкостью 100-200 л обеспечит всего 1-2 л герметика.
Абсолютное давление = absolute pressure и приборное (избыточное) давление = gauge pessure. В частности — что такое psig и psia ? Единица давления psig и psia. Вариант для печати.
В классической физике, например, в термодинамике, давление измеряется в единицах абсолютного давления (большой выбор от dpva.ru) относительно абсолютного вакуума, но, говоря о давлении в технике, мы обычно имеем в виду т.н. приборное или избыточное давление (изредка его еще называют «действующим», и совсем редко «манометрическим», у англосаксов «gauge»).
Все эти понятия связаны следующим нехитрым равенством: Абсолютное (давление на планете земля, это суммарное давление, воздействующее на вещество, или другими словами это сумма атмосферного (барометрического) и избыточного давлений:
Рабс =Ратм +Ризб
Разница между понятиями в том, что:
- приборное или избыточное («действующее», «манометрическое», «gauge» ) давление измеряется относительно атмосферного, или:
- абсолютный вакуум равен «минус одной атмосфере» приборного (избыточного,манометрического) давления и, при этом, равен нулю абсолютного давления.
Имейте в виду, что в подавляющем большинстве случаев в инжнерной жизни говоря о давлении имеют в виду именно приборное (избыточное) давление. Но всегда можно и переспросить.
- Единица давления psig — приборное (избыточное над атмосферным) давление в psi (фунтах на квадратный дюйм) — единица англосаксов.
- Единица давления psia — абсолютное в psi (фунтах на квадратный дюйм) — единица англосаксов..
- Абсолютное давление — величина измеренная относительно давления равного абсолютному нулю. Другими словами — давление относительно абсолютного вакуума.
- Барометрическое давление, атмосферное дваление — это абсолютное давление земной атмосферы. Свое названиеэтот тип давления получил от измерительного прибора барометра, который как известно определяет атмосферное давление в определенный момент времени при определенно температуре и на определенной высоте над уровнем моря. Относительно этого давления определяются избыточное давление и вакуум.
- Давление избыточное — имеет место в том случае если имеется положительная разность между измеряемым давлением и барометрическим. То есть избыточное давление это величина на которую измеряемое давлением больше барометрического. Для измерения этого вида давления используют манометр. Это, очевидно, положительное приборное давление.
- Вакуум или по другому вакуумметрическое давление это величина на которую измеряемое приборное давление меньше барометрического. Если избыточное давление обозначается в положительных единицах, то вакуум в отрицательных от -103 до 0 кПа. Приборы способные измерять этот тип давления называют вакуумметрами. Это, само-собой, отрицательное приборное давление.
- Дифференциальное давление возникает когда сравнивается одно давление относительно другого. В строгом смысле все виды двления, кроме абсолютного — диффренциальные 🙂
Парообразование
Испарение-это свойство сбрасывать жидкость и изменять состояние агрегации в газ. Испарение, которое происходит только на поверхности капающей жидкости, называется испарением. Испарение всей жидкости называется boiling. It происходит при определенной температуре в зависимости от давления. Давление, при котором жидкость кипит при данной температуре, является давлением насыщенного пара или давлением испарения rp. It называется п.
Его величина зависит от типа жидкости и ее температуры. Внутри таблицы. 1. 15 пн воды при различных температурах. (mpa) показывает значение другого жидкостного pn согласно температуре. Значения для (МПа) приведены в таблице. 1. 16 . Если рабочая жидкость представляет собой многокомпонентную смесь различных минеральных масел, то расчет позволяет взять жидкость с большим значением Р.
К относительно низкой упругости относится силиконовое масло. Ниже приведено 1 давление насыщенного пара этой жидкости марки. Температура, °С25 65130200260 260 или выше Высокая скорость сатурации давления Пар п». Р, МПа 0, 00072 0, 001 0, 003 0, 007 увеличение 0, 007-0, 01 Силиконовая жидкость имеет сорт, давление паров которого в 5-10 раз превышает заданное значение.
1, СС | Рн.п» МПА |
1 | 1, С |
Рн.П’ МПа | 1 рн.п- МПа | Рн.п» МПа | ||
0,0006 | 25 | 0,0032 | 60 | 0,0202 | 90 | 0,0714 | |
5 | 0,0009 | 30 | 0,0043 | 70 | 0,0317 | 100 | 0,1033 |
10 | 0,0012 | 40 | 0,0075 | 75 | 0,0392 | 125 | 0,2370 |
20 | 0,0024 | 50 | 0,0126 | 80 | 0,0482 | 150 | 0,4850 |
Сила тяжести
Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.
Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.
Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно. Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.
Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.
Зависимость скорости от напора
В водоснабжении существует одна весьма важна взаимосвязь – зависимость давления от скорости воды в трубопроводе. Данное свойство подробно описано в физическом законе Бернулли. Подробно рассматривать его мы не будем, но укажем лишь на его суть — при увеличении скорости течения воды её давление в трубе снижается.
Так вышло, что не все сантехнические приборы рассчитаны на эксплуатацию при высоком напоре, в большинстве случаев они ограничены 5-6 атмосферами, — иначе повышенных износ и преждевременный выход из строя.
В центральных магистралях этот показатель значительно выше – может достигать 15 атмосфер, а потому для его снижения при подключении внутренних систем используют трубы меньшего диаметра.
Физические свойства
У давления воды есть разные физические свойства. Какие?
На глубине
При погружении на глубину давление воды будет расти. Здесь используется такая формула:
Р = ρ × g × h, причем:
- ρ – это плотность воды,
- g – средний показатель ускорения для свободного падения, который принимают равным 9,81 с/ кв.с (или даже 10 – для грубых подсчетов),
- h – глубина, для которой и выполняются расчеты.
Температура замерзания воды под давлением
В целом с повышением давления температура замерзания падает, вплоть до отрицательных температур. Например, при показателе в 2 атм вода замерзает уже не при 0°С, а при –2°С, а при давлении 3 атм – при –4°С.
Сила
Из школьного курса известно, что это понятие отражает такое явление, как силу, которое вода, налитая в сосуд, оказывает на его дно. То есть сила считается как вес водяного столба определенной высоты с площадью основания такой же, как у этого сосуда.
Детально о силе давления читайте здесь.
Как зависит расход H2O от напора и диаметра трубы
Формула зависимости достаточно сложна. Но в общих чертах можно сказать, что чем меньше диаметр трубы, тем выше сопротивление ее стенок и тем ниже давление.
Таким образом, при большем диаметре водопроводных труб вода транспортируется быстрее и с меньшей потерей напора, но и расход получается выше.
Кавитация насоса
Когда происходит кавитация?
Кавитация случается, когда масло не полностью заполняет предназначенное для заполнения пространство в насосе. Это способствует появлению воздушных пузырьков, которые вредны для насоса. Представим, что впускная линия насоса узкая, это вызывает падение входящего давления. Когда давление низкое, масло не может поступать в насос так же быстро, как и выходить из него. Результатом является то, что пузырьки воздуха образуются в поступающем масле.
Воздух в масле
Такое снижение давления приводит к появлению некоторого количества растворённого воздуха в масле и воздух заполняет полости. Воздух в масле в виде пузырьков, так же заполняет полости. Когда заполненные воздухом полости, которые образованы при низком давлении, поступают в область высокого давления насоса, они разрушаются. Это создаёт действие, равносильное взрыву, которое разбивает или выносит мелкие частицы насоса и вызывает чрезмерный шум и вибрацию насоса.
Последствия взрыва
Разрушения, происходящее постоянно, вызывают взрыв. Сила этого взрыва достигает 1000 кг/см² и мелкие металлические частицы выносятся из насоса. Если насос работает при кавитации длительное время, он может быть серьёзно повреждён.
Давление газа
Мы только что выяснили, что молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.
Например, в комнате, в которой вы сейчас находитесь, на каждый квадратный сантиметр за 1 с молекулами воздуха наносится столько ударов, что их количество выражается двадцати трехзначным числом.
Хотя сила удара отдельной молекулы мала, действие всех молекул о стенки сосуда приводит к значительному давлению. Это как если бы один комар толкал машину, то она бы и не сдвинулась с места, а вот пару сотен миллионов комаров вполне себе способны эту машину сдвинуть.
Гидравлический пресс
Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.
Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.
Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни
Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.
\
\( \Delta V_{1} \left(\text{м}^{3}\right) \) – объем жидкости, вытесненной из первого цилиндра;
\( \Delta V_{2} \left(\text{м}^{3}\right) \) – объем жидкости, перешедшей во второй цилиндр.
Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:
\
\( \Delta h \left(\text{м}\right) \) – высота столбика вытесненной жидкости;
\( S \left(\text{м}^{2}\right) \) – площадь поршня (или основания цилиндра);
Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать
\
То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.
Площадь поверхности поршня и его диаметр связаны соотношением:
\
\( S \left(\text{м}^{2}\right) \) – площадь поршня;
\( d \left(\text{м}\right) \) – диаметр поршня;
Давления в цилиндрах будут равны.
\
Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:
\
Здесь дробью вида \(\displaystyle\large \frac{F}{S}\) обозначено давление твердого тела (ссылка) — поршня.
Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:
Как правильно подобрать манометр. Основные параметры. На что важно обратить внимание при покупке?
Манометр подбирают к конкретной системе с учетом целого комплекса норм.
П араметры, которые следует оценить при покупке манометра.
1.Диапазон измерения – один из важнейших критериев при выборе манометра.
Существует стандартный ряд давлений для манометров, согласно которому нужно выбирать соответствующее. Со стандартным рядом давлений можно ознакомиться в ГОСТ 2405-88. Приборы с верхним пределом измерений до 40 кПа включительно (до 4000 кгс/м2 включительно) относятся к напоромерам, тягомерам и тягонапоромерам, а от 60 кПа (от 0,6 кгс/см2) — к манометрам, вакуумметрам и мановакуумметрам.
Диапазон показаний (записи) прибора должен выбираться из табл. 6 ГОСТ 2405-88.
Ряд давлений в Паскаль для вакуумметров, мановакуумметров и манометров согласно ГОСТ 2405-88:
Ряд давлений в кПа:
Ряд давлений в МПа:
Вакуумметры:
.-100 — 0 кПа;
Мановакуумметры:
.-100. 0. 60; 150; 300; 500 кПа;
Мановакуумметры:
.-0,1. 0. 0,9; 1,5; 2,4 МПа;
Манометры:
0 — 60; 100; 160; 250; 400; 600 кПа;
Манометры:
0 — 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160 МПа.
Стандарный ряд давлений в Паскаль для тягонапоромеров и напоромеров согласно ГОСТ 2405-88:
Тягонапоромеры:
-1…0. 0,6; 1,5/-1,25…0. 1,25/ -1,5…0. 1; 2,5/-2…0. 2; 4/ -2,5…0. 1,5/-3…0. 3/ -4…0. 2; 6/-5…0. 5/ -6…0. 4; 10/ -8…0. 8/-10…0. 6; 15/ -12,5…0. 12,5/-15…0. 10/ -20…0. 20 кПа;
Напоромеры:
0 — 1,6; 2,5; 4; 6; 10; 16; 25; 40 кПа.
Диапазон измерений избыточного давления должен быть от 0 до 100 % или от 25 до 75 % диапазона показаний. Иногда можно услышать рекомендацию о выборе давления в диапазоне от 1/3 до 2/3 шкалы. Если вы возьмете прибор на слишком высокое давление, и будете снимать показания от 0 до 25 % шкалы, то увеличится погрешность снятия показаний. Если прибор будет работать в диапазоне от 75 до 100 % своей шкалы, то механизм будет находиться в постоянной перегрузке и прибор быстро выйдет из строя.
Для примера можно пользоваться следующей простой формулой. К Вашему рабочему давлению в системе, необходимо прибавить 30% и взять следующее по порядку давление из стандартного ряда
по ГОСТ 2405-88 .
Допустим у вас в системе рабочее давление 2 Мпа. 2+30% = 2,6 Мпа, следующее порядковое значение по стандартному ряду это 4 Мпа. В данном случае такая шкала будет предпочтительней.
Очень важно при покупке манометра определиться не только с давлением, но и с единицами измерения. В Международной системе единиц физических величин (СИ) давление измеряется в паскалях
Паскаль равен давлению, вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности , площадью один квадратный метр
В Международной системе единиц физических величин (СИ) давление измеряется в паскалях. Паскаль равен давлению, вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности , площадью один квадратный метр.
Закон Паскаля
Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».
Мы немного упростим формулировку:
Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.
Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны
На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.
Видно, что на разных глубинах давление отличается.
\
Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.
Приборы для измерения давления
Разумеется, человечество изобрело многие приборы, позволяющие быстро и удобно измерять уровень давления. Для измерения давления окружающей среды, оно же атмосферное давление используют такой прибор как манометр или барометр.
Так выглядит классический барометр для измерения атмосферного давления.
Чтобы узнать артериальное давление у человека, часто служащее причиной недомоганий используется прибор известный большинству под названием неинвазивный тонометр. Таких приборов существует множество разновидностей.
Также биологи в своих исследованиях занимаются расчетами осмотического давления – это давление внутри и снаружи клетки. А метеорологи, в частности по перепадам давления в окружающей среде предсказывают нам погоду.
Теплоноситель в статическом и динамическом состояниях
Теплоноситель любой системы отопления может находиться в двух состояниях:
- неподвижном (статическом), когда отсутствует нагрев в гравитационной системе (отсутствует естественная циркуляция) или выключен циркуляционный насос в системе с принудительной циркуляцией;
- подвижном (динамическом), вызываемом такими причинами:
- естественной циркуляцией теплоносителя, побуждаемой градиентом давления вследствие неравномерности прогрева рабочей жидкости вдоль контура гравитационной системы отопления;
- принудительной циркуляцией теплоносителя, побуждаемой циркуляционным насосом;
- тепловым расширением теплоносителя, побуждающим его вытеснять воздух/газ из расширительных баков, занимая освободившиеся объемы.
Неподвижный теплоноситель оказывает на внутренние поверхности элементов системы только (гидро)статическое давление, изучаемое гидростатикой. Движущийся теплоноситель характеризуется (гидро)динамическим давлением, изучаемым гидродинамикой. Оно складывается из статической составляющей, затем части, определяемой тепловым расширением жидкости, наконец составляющей, создаваемой т.наз. скоростным напором движущейся жидкости. Далее, рассматривая движущийся нагретый теплоноситель, будем использовать термин рабочее (результирующее) давление.
Общая формула давления
Из классического определения того, что такое давление можно вывести общую формулу для его расчета. Выглядеть она будет таким образом:
P = F/S
Где F – это сила давления, а S – площадь поверхности на которую она действует. То есть иными словами формула нахождения давления – это сила, воздействующая на определенную поверхность, разделенная на площадь этой самой поверхности.
Как видно из формулы, при расчете давления всегда действует следующий принцип: чем меньше пространство, на которое влияет сила, тем большее количество давящей силы на него приходится и наоборот.
Это можно проиллюстрировать простым жизненным примером: хлеб легче всего порезать острым ножом, потому что у острого ножа заточенное лезвие, то есть площадь поверхности S из формулы у него минимальна, а значит, давление ножа на хлеб будет максимально равно приложенной силе F того кто держит нож. А вот тупым ножом порезать хлеб уже сложнее, так как у его лезвия большая площадь поверхности S, и давление ножа на хлеб будет меньшим, и значит, чтобы отрезать себе кусок хлеба нужно приложить большее количество силы F.
Общая формула давления, по сути, отлично описывает формулу давления твердого тела.