Рядовая звезда: как солнце влияет на нашу планету и что с ним будет к концу жизни

Содержание:

Расчет аккумуляторов для солнечной электростанции

Далее перейдем к расчёту ёмкости аккумуляторной батареи для солнечных панелей. Их количестов и емкость должна быть такой, чтобы энергии которая в них запасается хватило на темное время суток, стоит учесть что ночью потребление электроэнергии минимально, по сравнению с дневной активностью.

Аккумулятор на 100А.ч. запасает примерно 100А * 12В = 1200Вт. (лампочка на 100Вт. проработает от такого акб 12 часов). Так если за ночь вы потребляете 2,4кВт.ч. электричества, то вам необходимо установить 2 АКБ по 100А.ч. (12В), но тут стоит учитывать что аккумуляторы нежелательно разряжать на 100%, а лучше не более 70%-50%. Исходя из этого получаем, что 2 АКБ по 100А.ч. будут запасать 2400 * 0,7 = 1700Вт.ч. Это верно при разряде не большими токами, при подключении мощных потребителей происходит просадка напряжения и емкость по факту уменьшается.

Если вы хотите рассчитать, какая емкость аккумулятора нужна к солнечной батари, ниже приводим таблицу соответствия (для системы 12В.):

  • Солнечная батарея 50Вт. — АКБ 20-40А.ч.
  • 100Вт. — 50-70А.ч.
  • 150Вт. — 70-100А.ч.
  • 200Вт. — 100-130А.ч.
  • 300Вт. — 150-250А.ч.

Вариации солнечной освещенности

Сезонная и орбитальная вариация

На Земле солнечное излучение изменяется в зависимости от угла наклона Солнца над горизонтом , с большей продолжительностью солнечного света на высоких широтах летом и с отсутствием солнечного света зимой вблизи соответствующего полюса. Когда прямое излучение не блокируется облаками, оно воспринимается как солнечный свет . Нагревание земли (и других объектов) зависит от поглощения электромагнитного излучения в виде тепла .

Количество радиации, перехватываемой планетным телом, обратно пропорционально квадрату расстояния между звездой и планетой. Земли орбиты и наклонение изменение с течением времени ( в течение тысяч лет), иногда образуя почти идеальный круг, а в других протянув к эксцентриситета орбиты 5% ( в настоящее время 1,67%). При изменении эксцентриситета орбиты среднее расстояние от Солнца ( большая полуось существенно не меняется, поэтому общая инсоляция в течение года остается почти постоянной из-за второго закона Кеплера ,

2Ар2dтзнак равноdθ,{\ displaystyle {\ tfrac {2A} {r ^ {2}}} dt = d \ theta,}

где — инвариант «площадной скорости». То есть интегрирование по орбитальному периоду (также инвариантное) является постоянным.
А{\ displaystyle A}

∫Т2Ар2dтзнак равно∫2πdθзнак равноcопsтапт.{\ displaystyle \ int _ {0} ^ {T} {\ tfrac {2A} {r ^ {2}}} dt = \ int _ {0} ^ {2 \ pi} d \ theta = \ mathrm {constant} .}

Если мы примем мощность солнечного излучения  P как постоянную во времени и солнечное излучение, заданное законом обратных квадратов , мы также получим среднюю инсоляцию как константу.

Но сезонное и широтное распределение и интенсивность солнечного излучения, получаемого на поверхности Земли, действительно различаются. Влияние угла Солнца на климат приводит к изменению солнечной энергии летом и зимой. Например, на широте 65 градусов это значение может отличаться более чем на 25% в результате изменения орбиты Земли. Поскольку изменения зимой и летом имеют тенденцию компенсироваться, изменение среднегодовой инсоляции в любом данном месте близко к нулю, но перераспределение энергии между летом и зимой сильно влияет на интенсивность сезонных циклов. Такие изменения, связанные с перераспределением солнечной энергии, считаются вероятной причиной наступления и исчезновения недавних ледниковых периодов (см. Циклы Миланковича ).

Изменение солнечной интенсивности

Космические наблюдения солнечной радиации начались в 1978 году. Эти измерения показывают, что солнечная постоянная непостоянна. Он варьируется во многих временных масштабах, включая 11-летний солнечный цикл солнечных пятен. Если вернуться в прошлое, нужно полагаться на реконструкцию освещенности с использованием солнечных пятен за последние 400 лет или космогенных радионуклидов за последние 10 000 лет. Такие реконструкции были сделаны. Эти исследования показывают, что в дополнение к изменению солнечного излучения в зависимости от солнечного цикла (цикл (Швабе)), солнечная активность изменяется с более длинными циклами, такими как предлагаемый 88-летний ( цикл Глейсберга ), 208-летний ( цикл ДеВриза ) и 1000- летний период. год ( вихревой цикл ).

Что делать

Из опрошенных 1500, более 1000 специалистов высказались за улучшение статистики при сборе и обработке данных, улучшение качества надзора со стороны боссов, а также более строгое планирование экспериментов.

Вопрос: Какие факторы помогут повысить воспроизводимость?

Ответы (сверху вниз): –Лучшее понимание статистики –Более строгий надзор –Улучшенное планирование экспериментов –Обучение –Внутрилабораторная проверка –Совершенствование практических навыков –Стимулирование к формальной перепроверке данных –Межлабораторная проверка –Выделение большего количества времени для управления проектами –Повышение стандартов научных журналов –Выделение большего количества времени для работы с лабораторными записями

Заключение и немного личного опыта

Во-вторых, в статье замалчивается (вернее, не рассматривается) роль научных метрик и рецензируемых научных журналов в возникновении и развитии проблемы невоспроизводимости результатов исследований. В погоне за скоростью и частотой публикаций (читай, повышение индексов цитирования) резко падает качество и не остаётся времени на дополнительную проверку результатов.

Как говорится, все персонажи вымышлены, но основано на реальных событиях. Довелось как-то одному студенту проводить рецензирование статьи, ибо не у каждого профессора есть время и силы на вдумчивое чтение статей, поэтому собирается мнение 2-3-4 студентов и докторов, из которого складывается отзыв. Была написана рецензия, в ней указывалось на невоспроизводимость результатов по методике, описананой в статье. Это было наглядно продемонстрированно профессору. Но дабы не портить отношения с «коллегами» – ведь у них-то всё получается – рецензия была «скорректирована». И таких статей опубликовано 2 или 3 штуки.

Получается замкнутый круг. Учёный отправляет статью редактору журнала, где указывает «желаемых» и, основное, «нежелаемых» рецензентов, то есть фактически оставляя лишь положительно настроенных к авторскому коллективу. Они рецензируют работу, но не могут по-чёрному «гадить в комментах» и стараются из двух зол выбрать меньшее – вот список вопросов, на которые необходимо ответить, и мы тогда опубликуем статью.

PS: Статья переводилась и писалась на скорую руку, обо всех замеченных ошибках и неточностях, просьба писать в ЛС.

Широта и долгота глубина проблемы

Представьте, что Вы – учёный. Вам попадается интересная статья, но результаты/эксперименты не могут быть воспроизведены в лаборатории. Логично написать об этом авторам оригинальной статьи, спросить совета и задать уточняющие вопросы. Согласно опросу, менее 20% делали это когда-либо в своей научной карьере!

Авторы исследования отмечают, что, возможно, такие контакты и разговоры слишком сложны для самих учёных, потому что вскрывают их некомпетентность и несостоятельность в тех или иных вопросах или раскрывают слишком много деталей текущего проекта.

Более того, абсолютное меньшинство учёных попыталось опубликовать опровержение невоспроизводимых результатов, сталкиваясь при этом с противодействием со стороны редакторов и рецензентов, которые требовали преуменьшить сравнение с оригинальным исследованием. Стоит ли удивляться, что шанс сообщить о невоспроизводимости научных результатов составляет порядка 50%.

Первый вопрос: Пытались ли Вы воспроизвести результаты эксперимента?

Второй вопрос: Пытались ли Вы опубликовать свою попытку воспроизвести результаты?

Может быть стоит тогда внутри лаборатории хотя бы проводить проверку на воспроизводимость? Самое печальное, что треть респондентов даже НИКОГДА и не задумывалось о создании методик проверки данных на воспроизводимость. Только 40% указало, что они регулярно пользуются такими методиками.

Вопрос: Разрабатывали Вы когда-либо специальные методики/тех.процессы для улучшения воспроизводимости результатов?

Другой пример, биохимик из Соединённого Королевства, которая не пожелала раскрывать своё имя, говорит, что попытки повторить, воспроизвести работу для её лабораторного проекта просто удваивают временные и материальные затраты, ничего не давая и не привнося нового в работу. Дополнительные проверки проводятся лишь для инновационных проектов и необычных результатов.

И конечно же, извечные русские вопросы, которые стали пытать зарубежных коллег: кто виноват и что делать?

Фотоэлектрический (фотогальванический, фотовольтаический PV)

Этот термин происходит от слов: «phos» (от греч., свет) и «вольт» (от фамилии известного итальянского физика Вольта, в честь которого названа единица измерения электрического напряжения). В физике слово «фотоэлектрический» относится ко всему, что производит электричество при воздействии света или другой излучающей энергии. В гелиоэнергетике термин «фотоэлектрический» обозначает технологию, которая помогает преобразовывать солнечный свет в электрическую энергию, используя полупроводниковые материалы, поглощающие электроны от солнца. Фотоэлектрическая система использует солнечные батареи для производства солнечной энергии. Солнечные элементы и солнечные панели часто называют фотоэлементами и фотоэлектрическими панелями, чтобы показать, как производится электричество с их помощью. Каждый солнечный модуль/панель состоит из нескольких солнечных элементов, которые отвечают за выработку электроэнергии. Фотоэлектрические установки могут быть установлены на земле, на стенах, на крышах домов или быть мобильными.

Фотоэлектрический (фотогальванический, фотовольтаический, PV) эффект

Явление, когда под воздействием света и в результате химической/физической реакции в веществе появляется напряжение и электрический ток.

Солнечная панель/батарея/модуль

Это несколько фотоэлементов, объединенных в один блок. Устройство представляет собой совокупность солнечных элементов, скоммутированных между собой параллельно, последовательно или последовательно-параллельно. Обычно солнечные элементы соединены вместе для выработки большего количества энергии. Типичная солнечная панель состоит из 36-40 солнечных элементов. Для достижения желаемого тока и напряжения солнечные панели соединяются вместе, образуя массив. В каждом конкретном случае требуется разное количество солнечных панелей, которое зависит от потребностей в энергии. Тем не менее, количество энергии также зависит от уровня эффективности солнечных батарей.

Ветроэнергетика в России

Размер российского ветроэнергетического рынка невелик и составляет менее 1% от мирового. Россия является единственной крупной экономикой мира, в которой ветроэнергетика только начинает делать первые шаги. Но есть и положительные тенденции — общая установленная мощность ВЭС в нашей стране составляет более 1 ГВт, причем за прошедший 2020 год ввели в эксплуатацию ряд новых ветроэнергетических установок общей мощностью 700 МВт.

Самые крупные ВЭС — Кочубеевская ВЭС мощностью 210 МВт в Ставропольском крае и Адыгейская ВЭС мощность 150 МВт. Обе ветроэлектростанции были построены при помощи дочерней компании «Росатома».

Зеленая экономика

Анатолий Чубайс — о потенциале зеленой энергетики в России

Как выбрать солнечную панель

Перед тем как выбирать солнечную панель, необходимо разобраться с местом ее установки, а также познакомиться с сезонными изменениями светимости Солнца для конкретной местности. Дешевые солнечные панели для частного дома редко гарантируют долговечность и при удовлетворительных стартовых показателях, начинают снижать производительность уже через год-два эксплуатации.

Применение слишком дорогих, как наиболее качественных панелей, также может оказаться неоправданным, поскольку при малом энергопотреблении и редком использовании окупаемость таких преобразователей растянется на десятилетия. К наиболее важным критериям выбора солнечных панелей относят назначение, тип, вырабатываемое напряжение и мощность.

Назначение

Выполняя единую функцию – преобразование света Солнца в электрическую энергию, солнечные панели отличаются условиями эксплуатации, при которых они предполагают наибольшую эффективность:

  • Для туризма – легкие, портативные модели, не создающие проблем с транспортировкой;
  • Для дачи, садового участка, временного жилища – мобильные модули, предусматривающие быструю установку и демонтаж;
  • Для частного дома, магазина – монокристаллические или поликристаллические стационарные модули, выбор которых зависит от бюджета, площади и прочности крыши, потребляемой мощности и др.

При создании экономичного автономного уличного освещения целесообразно воспользоваться гибкими пленочными панелями.

Тип панели

Солнечные модули различают по материалу изготовления фотоэлементов. Каждому типу присущи недостатки. Однако наличие определенных преимуществ не позволяет производителям сосредоточить производство на каком-либо одном из них:

  • Монокристаллические – сложная технология изготовления. Большой вес. КПД 18–22%. Высокая цена;
  • Поликристаллические – набраны из обрезков монокристаллов. КПД 12–18%. В разы дешевле монокристаллов;
  • Пленочные – легкие гибкие солнечные панели, выпускаемые в рулонах. Режутся, подгоняются под формат крыши. Самые дешевые, но малоэффективные. КПД до 10%;
  • Аморфные – кремниево-водородная основа. КПД 13–17%. Эффективны при ослабленной освещенности.

При достаточной установочной площади дорогую поликристаллическую панель можно заменить двумя-тремя монокристаллическими, получив ту же производительность при меньших затратах.

Мощность и напряжение

Используемые в быту световые солнечные панели бывают 12-ти и 24-х вольтовыми. Первые легко согласовываются со стандартными инверторами, эффективны при потреблении электроэнергии, не превышающей 1 кВт.

При потребительских запросах свыше 1 кВт целесообразно купить панели с номинальным напряжением 24 В. Последовательное соединение двух модулей дает в результате 48 В, что соответствует параметрам большинства мощных инверторов.

Для зарядки аккумуляторов смартфонов и других гаджетов предусмотрены компактные преобразователи солнечной энергии, с выходным напряжением 5–6 В.

Общая характеристика технологий использования солнечного излучения. Пассивное использование солнечной энергии

Технологии использования солнечной энергии можно классифицировать следующим образом:

  • пассивное использование солнечного излучения;
  • водонагрев (солнечные тепловые коллекторы) (рис. 4, а);
  • фотоэлектричество (фотоэлектрические модули) (рис. 4, б);
  • использование концентрированного солнечного излучения (рис. 4, в);
  • использование солнечного излучения для получения топлива (например, водорода).

Рис. 4. Варианты использования солнечной энергии

Преобразование солнечной энергии в тепловую обеспечивается за счет способности атомов вещества поглощать электромагнитное излучение. При этом энергия электромагнитного излучения преобразуется в кинетическую энергию атомов и молекул вещества, т. е. в тепловую энергию. При пассивном использовании солнечного излучения нагрев объектов, например, внутренних помещений жилых зданий, осуществляется за счет прямого поглощения солнечного излучения, конструкциями, мебелью и другими предметами, находящихся внутри помещения (рис. 5). Результатом этого является повышение температуры и, соответственно, снижение тепловой энергии, требуемой для обогрева зданий за счет других источников (котельные, электрический обогрев и др.). Это направление в домостроении получило название «солнечная архитектура».

Важным с точки зрения пассивного использования солнечной энергии является учет следующих факторов (рис. 6):

  • ориентация строения на юг;
  • его максимальная теплоизоляция;
  • распределение жилых помещений на солнечной стороне;
  • минимизация внешних затеняющих элементов;
  • отсутствие затенения зданий при квартальной застройке;
  • использование внутри помещений элементов его отделки и материалов, максимально поглощающих солнечную энергию и имеющих повышенную теплоемкость (плитка темных оттенков, мраморные подоконники, отсутствие обоев и т. п.)

Рис. 5. Пассивное использование солнечной энергии в домостроении

а

б

Рис. 6. Размещение здания и особенности его конструкции в солнечной архитектуре

Как видно из рис. 5, 22 применение специальных выступающих элементов конструкции здания позволяет обеспечить проникновение солнечных лучей внутрь помещений в зимнее время, а в летнее горячее время ограничить нагрев за счет солнечной энергии. Можно также отметить, что зашторивание окон вместе с остеклением (рис. 7) обеспечивает проникновение в дом только 12,1 % тепловой и 8 % радиационной составляющей солнечной энергии.

Рис. 7. Влияние зашторивания и остекления на проникновение в дом солнечной энергии

Преимущества солнечной архитектуры:

  • летом отсутствует перегрев, вызванный солнечным излучением, и поэтому уменьшается необходимость охлаждения;
  • зимой солнечное излучение используется максимально, уменьшая необходимость отопления;
  • при планировании домов используются только пассивные решения, такие как расположение и величина окон, расположение здания по отношению к сторонам света и т. д., поэтому не происходит дополнительного энергопотребления и загрязнения окружающей среды;
  • является экономически целесообразным, так как пассивные, являющиеся частью здания компоненты служат столько же, сколько само здание;
  • поскольку используются традиционные архитектурные элементы, это не влияет на внешний облик здания;
  • уменьшает использование углеводородного топлива;
  • препятствует дальнейшему развитию климатических изменений.

Недостатки солнечной архитектуры:

  • архитектуру пассивной солнечной энергии следует учитывать при проектировании здания;
  • здание может иметь невыгодное для максимального использования солнечного излучения местоположение;
  • в случае зданий, находящихся под защитой (исторические), могут возникнуть препятствия при изменении их внешнего вида;

Формулы светимости

Точечный источник S излучает свет одинаково во всех направлениях. Величина, проходящая через область A, зависит от расстояния от поверхности до источника света.

Уравнение Стефана – Больцмана, примененное к черному телу, дает значение светимости для черного тела, идеализированного объекта, который является совершенно непрозрачным и неотражающим:

Lзнак равноσАТ4{\ displaystyle L = \ sigma AT ^ {4}} ,

где A — площадь поверхности, T — температура (в градусах Кельвина), а σ — постоянная Стефана – Больцмана со значением5,670 374 419 … × 10 −8  Вт⋅м −2 ⋅K −4 .

Представьте себе точечный источник света яркости, который одинаково излучается во всех направлениях. Вся внутренняя поверхность полой сферы с центром в точке будет освещена. По мере увеличения радиуса площадь поверхности также будет увеличиваться, и при постоянной яркости будет увеличиваться площадь поверхности для освещения, что приведет к снижению наблюдаемой яркости.
L{\ displaystyle L}

Fзнак равноLА{\ displaystyle F = {\ frac {L} {A}}} ,

куда

А{\ displaystyle A} — площадь освещаемой поверхности.
F{\ displaystyle F}- плотность потока освещаемой поверхности.

Площадь поверхности сферы радиуса r равна , поэтому для звезд и других точечных источников света:
Азнак равно4πр2{\ Displaystyle А = 4 \ пи г ^ {2}}

Fзнак равноL4πр2{\ Displaystyle F = {\ гидроразрыва {L} {4 \ pi r ^ {2}}} \,},

где — расстояние от наблюдателя до источника света.
р{\ displaystyle r}

Для звезд на главной последовательности светимость также связана с массой примерно так, как показано ниже:

LL⊙≈(MM⊙)3.5{\ displaystyle {\ frac {L} {L _ {\ odot}}} \ приблизительно {\ left ({\ frac {M} {M _ {\ odot}}} \ right)} ^ {3.5}} .

Если мы определим массу звезды в терминах масс Солнца , указанное выше соотношение можно упростить следующим образом:
M{\ displaystyle M}

L≈M3.5{\ Displaystyle L \ приблизительно M ^ {3.5}} .

Что влияет на производительность гелио панели?

Перечислим основные факторы, от которых зависит величина генерации.

1. Технические характеристики

Относятся к «внутренним» параметрам. Наиболее существенны:

  • Мощность – самый важный критерий. Очевидно, что модель на 500 ватт обеспечит более высокую выработку, чем 250-ваттная. Даже если вторая панель относится к более совершенному классу.
  • Тип ячеек – влияет на выработку в различных условиях освещения. Без учета данного фактора ответить, сколько энергии дают солнечные батареи в зависимости от времени дня или угла наклона относительно солнца невозможно. Монокристаллические варианты обладают самым высоким КПД, но только при идеальных условиях. Поликристаллы показывают лучшие результаты при облачной погоде и меньше теряют при отклонении от строгой вертикали направления падения лучей. 

2. Сторонние причины

Включают в себя:

  • Уровень инсоляции для данной местности. Преимущественно зависит от географической широты. Если Вы живете в Краснодаре, одна и та же панель при прочих равных условиях будет вырабатывать в 1,5 раза больше электроэнергии, чем в Ленинградской области. 
  • Погода. Чтобы понять, сколько энергии дает солнечная батарея при умеренной облачности, достаточно замерить показатели генерации и сравнить их с данными при ярком солнце. Результат окажется на 20 – 50% ниже, в зависимости от плотности облачного слоя.
  • Время суток. Примерно такие же потери из-за изменения угла падения и толщины атмосферы, которую приходится преодолеть солнечному лучу, возникают рано утром и поздно вечером.
  • Температура. Низкие температуры на производительность практически не влияют. Но при нагреве кремниевой панели выше 25% с каждым последующим градусом эффективность снижается примерно на 0,5%. Причем сказанное относится к нагреву рабочей поверхности, а не окружающей среды. Из-за этого при 30-градусной жаре и нагреве модуля до 60-70°C Вы можете потерять до 20% номинального КПД. 

Интересные факты о Солнце

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Список использованных источников • https://v-kosmose.com/solntse-interesnyie-faktyi-i-osobennosti • https://postnauka.ru/faq/65260 • https://obshe.net/posts/id345.html • https://www.popmech.ru/science/7853-puteshestvie-iz-tsentra-solntsa-nichto-v-mire-ne-vechno-eto-otnositsya-i-k-svetilu-kotoromu-my-obyaz/#part2 • https://astrogalaxy.ru/042a_Sun.html

Звездная светимость

Светимость звезды можно определить по двум звездным характеристикам: размеру и эффективной температуре . Первые обычно представлены в виде радиусов Солнца , R , а вторые — в градусах Кельвина , но в большинстве случаев ни один из них не может быть измерен напрямую. Чтобы определить радиус звезды, необходимы два других показателя: угловой диаметр звезды и ее расстояние от Земли. И то, и другое можно измерить с большой точностью в определенных случаях: холодные сверхгиганты часто имеют большой угловой диаметр, а у некоторых холодных эволюционировавших звезд в атмосфере есть мазеры, которые можно использовать для измерения параллакса с помощью РСДБ . Однако для большинства звезд угловой диаметр или параллакс, или и то, и другое, намного ниже наших возможностей измерить с какой-либо степенью уверенности. Поскольку эффективная температура — это просто число, которое представляет температуру черного тела, воспроизводящего светимость, очевидно, что ее нельзя измерить напрямую, но ее можно оценить по спектру.

Альтернативный способ измерения светимости звезды — измерение видимой яркости и расстояния до звезды. Третий компонент, необходимый для определения светимости, — это степень межзвездного поглощения , которое обычно возникает из-за газа и пыли, присутствующих в межзвездной среде (ISM), атмосфере Земли и околозвездном веществе . Следовательно, одной из центральных задач астрономии при определении светимости звезды является получение точных измерений для каждого из этих компонентов, без которых точное значение светимости остается неуловимым. Погасание можно измерить напрямую, только если известны как фактическая, так и наблюдаемая светимости, но его можно оценить по наблюдаемому цвету звезды, используя модели ожидаемого уровня покраснения межзвездной среды.

В нынешней системе классификации звезд звезды сгруппированы по температуре: массивные, очень молодые и энергичные звезды класса O имеют температуру, превышающую 30 000  K, в то время как менее массивные, обычно более старые звезды показывают температуру ниже 3500 K. Поскольку светимость пропорциональна температуре в четвертой степени, большое изменение температуры звезды приводит к еще более значительному изменению светимости звезды. Поскольку светимость зависит от большой мощности звездной массы, светящиеся звезды с большой массой имеют гораздо более короткое время жизни. Самые яркие звезды — это всегда молодые звезды, не более нескольких миллионов лет для самых экстремальных. На диаграмме Герцшпрунга – Рассела ось абсцисс представляет температуру или спектральный тип, а ось ординат — яркость или величину. Подавляющее большинство звезд находится вдоль главной последовательности: синие звезды класса O находятся в верхнем левом углу диаграммы, а красные звезды класса M падают в нижний правый угол. Некоторые звезды, такие как Денеб и Бетельгейзе, находятся выше и правее от главной последовательности, более светящиеся или более холодные, чем их эквиваленты на главной последовательности. Повышенная светимость при той же температуре или, альтернативно, более низкая температура при той же светимости, указывает на то, что эти звезды больше, чем звезды на главной последовательности, и их называют гигантами или сверхгигантами.

Голубые и белые сверхгиганты — это звезды высокой светимости, которые несколько холоднее самых ярких звезд главной последовательности. Звезда , как Deneb , например, имеет светимость около 200000 L , спектральный тип A2 и эффективную температуру около 8500 К, а это означает , что имеет радиус около 203  R (1,41 × 10 11  м ). Для сравнения, красный сверхгигант Бетельгейзе имеет светимость около 100000 L , спектральный тип М2, и температуру около 3500 К, т.е. его радиус составляет около 1000  R (7,0 × 10 11  м ). Красные сверхгиганты имеют самый большой тип звезды, но большинство светящихся намного меньше и горячие, с температурой до 50000 К и более и светимость нескольких миллионов L , то есть их радиусы всего лишь несколько десятков R . Например, r136a1 имеет температуру над 46,000 K и светимость более чем 6,100,000 L ( в основном в УФ), она только 39  R (2,7 × 10 10  м ).

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Мощность бытовых приборов, потребление электроэнергии

Теперь что касается потребителей и их мощности, приведем основные из них:

  • Телевизор Led – 50-150Вт.
  • Холодильник класса А – 100-300Вт. (только во время работы компрессора)
  • Ноутбук – 20-50Вт
  • Лампа энергосберегающая – 30Вт, Светодиодная 3-9Вт
  • Котел настенный (электроника + встроенный насос) – 70-130Вт.
  • Роутер – 10-20Вт.
  • Кондиционер 9 – 700-900Вт.
  • Эл. Чайник – 1500Вт.
  • Микроволновка – 500-700Вт.
  • Стиральная машина – 600 – 900Вт.
  • Видеорегистратор + 4 камеры – 30-50Вт.

Все мощности указаны в час работы прибора, стоит учитывать, что большинство приборов работают непродолжительное время, чайник подогрев – 5мин, холодильник включается раз в 2-3 часа на час для поддержания темп. Насос котла тоже работает по мере поддержания температуры теплоносителя. Так же можно рассчитать и другие приборы по этому принципу.

Размещение панелей

Установка солнечных батарей

В наших климатических условиях важно предусмотреть систему автоматической коррекции положения панелей. Поскольку интенсивность солнечной энергии изменяется с течением дня, очень

Автоматическая коррекция положения панелей

Необходимо, чтобы лучи падали на приемные элементы перпендикулярно. Благодаря этому выбивая из них больше заряженных электронов. Но чтобы это обеспечить придется организовать поворот или наклон солнечных батарей с ходом солнца. При угле падения лучей в 30 градусов, коэффициент отражения лучей составляет не менее 5%. А 95% световой энергии оказываются полезными. При увеличении угла отражения до 60 градусов, потери вырастают вдвое. А при угле отражения 80 градусов коэффициент потерь находиться на отметке 40%

Но кроме угла отражения немаловажное значение имеет эффективная площадь перекрытия панели солнечным потоком. Эта величина расчетная

И находиться из отношения реальной площади к синусу угла между плоскостью и направлением солнечных лучей. В итоге: для получения постоянно качественного потока, панели необходимо время от времени поворачивать к солнцу. А это соответственно будет требовать определенных технологий, что оказывается весьма дорогостоящим удовольствием.

Интересное:

Перейдет ли человечество на солнечную энергетику?Отечественный лидер в производстве фотокристаллов.

Ориентация панелей в одной плоскости

Можно пойти и простым путем, ориентировать солнечную батарею в одной плоскости под определенным углом. Например, для Москвы, расположена на 56 градусах широты) угол наклона к горизонту составит 56 градусов. А угол отклонения от вертикали 34 градуса. Тогда потребуется лишь обеспечить панели вращением в одной плоскости и возврат ее в исходную точку. Все это удорожает систему и делает ее менее надежной.

При конструировании системы поворота панелей большое значение имеет вес рамы, на которой будут располагаться фотоэлементы. И как следствие получается, что на вращение неоправданно расходуется мощность солнечной энергии. И это снижает количество полезной энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector