Реле arduino: устройства управления высоковольтным напряжением

Содержание:

2Схема подключения модуля реле SRD-05VDC-SL-C

Будем использовать модуль с двумя одинаковыми реле типа SRD-05VDC-SL-C или аналогичный.

Модуль имеет 4 разъёма: силовые разъёмы K1 и K2, управляющий разъём и разъём для подачи внешнего питания (с джампером).

Реле типа SRD-05VDC-SL-C имеет три контакта для подключения нагрузки: два крайних неподвижных, а средний – переключающийся. Именно средний контакт является своего рода «ключом», который коммутирует цепи тем или иным образом. На модуле есть подсказка, какой именно контакт реле является нормально замкнутым: маркировка «K1» и «K2» соединяет средний контакт с крайним левым (на фото). Подача управляющего напряжения на вход IN1 или IN2 (слаботочный управляющий разъём) заставит реле скоммутировать средний контакт контактной группы K1 или K2 с правым (силовой разъём). Ток, достаточный для переключения реле – около 20 мА, цифровые выводы Arduino могут выдавать до 40 мА.

Разъёмы модуля реле SRD-05VDC-SL-C

Разъём для подачи внешнего питания используется для того, чтобы обеспечить гальваническую развязку платы Arduino и модуля реле. По умолчанию, на разъёме между штырьками JD-VCC и VCC имеется перемычка. Когда она установлена, модуль использует для питания напряжение, поданное на вывод VCC управляющего разъёма, а плата Arduino не имеет гальванической развязки с модулем. Если нужно обеспечить гальваническую развязку модуля и Arduino, необходимо подавать питание на модуль через разъём внешнего питания. Для этого убирается перемычка, и дополнительное питание подаётся на контакты JD-VCC и GND. При этом питание на вывод VCC управляющего разъёма также подаётся (от +5 В Arduino).

Кстати, реле может коммутировать не только слаботочную нагрузку, как в нашем примере. С помощью реле можно замыкать и размыкать достаточно большие нагрузки. Какие именно – нужно смотреть в техническом описании к конкретному реле. Например, данное реле SRD-05VDC-SL-C может коммутировать сети с током до 10 А и напряжением до 250 В переменного тока или до 30 В постоянного тока. То есть его можно использовать, например, для управления освещением квартиры.

Реле SRD-05VDC-SL-C описание и схема

Реле – это электромеханическое устройство, которое служит для замыкания и размыкания электрической цепи с помощью электромагнита. Принцип работы силового реле srd-05vdc очень прост. При подаче управляющего напряжения на электромагнитную катушку, в ней возникает электромагнитное поле, которое притягивает металлическую лапку и контакты мощной нагрузки замыкаются.

Реле Ардуино: распиновка, характеристики

Если контакты реле замыкаются при подаче управляющего напряжения, то такое реле называют замыкающим. Если при подаче управляющего напряжения контакты реле размыкаются, а в нормальном состоянии контакты сомкнуты, то реле называется размыкающим. Также реле бывают постоянного и переменного тока, одноканальными, многоканальными и переключающими. Принцип действия у всех одинаковый.

Согласно характеристикам реле SRD-05VDC-SL-C, для переключения контактов достаточно около 5 Вольт 20 мА, выводы на Ардуино способны выдавать до 40 мА. Таким образом с помощью Ардуино мы можем управлять не только лампой накаливания, но и любым бытовым прибором — обогревателем, холодильником и т.д. Полевые транзисторы на Ардуино могут управлять токами только до 100 Вольт.

Модули и решения «умного дома» на Ардуино

Основным элементом умного дома является центральная плата микроконтроллера. Две и более соединенных между собой плат, отвечают за взаимодействие всех элементов системы.

Существует три основных микроконтроллера в системе:

Arduino UNO – средних размеров плата с собственным процессором и памятью. Основа — микроконтроллер ATmega328.  В наличии 14 цифровых входов/выходов (6 из них можно использовать как ШИМ выводы), 6 аналоговых входов, кварцевый резонатор 16 МГц, USB-порт (на некоторых платах USB-B), разъем для внутрисхемного программирования, кнопка RESET. Флэш-память – 32 Кб, оперативная память (SRAM) – 2 Кб, энергонезависимая память (EEPROM) – 1 Кб.

Arduino UNO

Arduino NANO – плата минимальных габаритов с микроконтроллером ATmega328. Отличие от UNO – компактность, за счет используемого типа контактных площадок – так называемого «гребня из ножек».

Arduino Nano

Arduino MEGA – больших размеров плата с микроконтроллером ATMega 2560. Тактовая частота 16 МГц (как и в UNO), цифровых пинов 54 вместо 14, а аналоговых 16, вместо 6. Флэш-память – 256 Кб, SRAM – 8 Кб, EEPROM – 4.

Arduino Mega

Arduino UNO – самая распространённая плата, так как с ней проще работать в плане монтажных работ. Плата NANO меньше в размерах и компактнее – это позволяет разместить ее в любом уголке умного дома. MEGA используется для сложных задач.

Сейчас на рынке представлено 3 поколение плат (R3) Ардуино. Обычно, при покупке платы, в комплект входит обучающий набор для собирания StarterKit, содержащий:

  1. Шаговый двигатель.
  2. Манипулятор управления.
  3. Электросхематическое реле SRD-05VDC-SL-C 5 В.
  4. Беспаечная плата для макета MB-102.
  5. Модуль с картой доступа и и двумя метками.
  6. Звуковой датчик LM393.
  7. Датчик с замером уровня жидкости.
  8. Два простейших устройства отображения цифровой информации.
  9. LCD-дисплей для вывода множества символов.
  10. LED-матрица ТС15-11GWA.
  11. Трехцветный RGB-модуль.
  12. Температурный датчик и измеритель влажности DHT11.
  13. Модуль риал тайм DS1302.
  14. Сервопривод SG-90.
  15. ИК-Пульт ДУ.
  16. Матрица клавиатуры на 16 кнопок.
  17. Микросхема 74HC595N сдвиговый регистр для получения дополнительных выходов.
  18. Основные небольшие компоненты электроники для составления схемы.

Можно найти и более укомплектованный набор для создания своими руками умного дома на Ардуино с нуля. А для реализации иного проекта, кроме элементов обучающего комплекта, понадобятся дополнительные вещи и модули.

Сенсоры и датчики

Чтобы контролировать температуру и влажность в доме и в подвальном помещении, потребуется датчик измерения температуры и влажности. В конструкторе умного дома это плата, соединяющая в себе датчики температуры, влажности и LCD дисплей для вывода данных.

Плата дополняется совместимыми датчиками движения или иными PIR-сенсорами, которые определяют присутствие или отсутствие человека в зоне действия, и привязывается через реле к освещению.

Датчик Arduino

Газовый датчик позволит быстро отреагировать на задымленность, углекислоту или утечку газа, и позволит при подключении к схеме, автоматически включить вытяжку.

Газовый датчик Arduino

Реле

Компонент схемы «Реле» соединяет друг с другом электрические цепи с разными параметрами. Реле включает и выключает внешние устройства с помощью размыкания и замыкания электрической цепи, в которой они находятся. С помощью данного модуля, управление освещением происходит также, если бы человек стоял и самостоятельно переключал тумблер.

Реле Arduino

Светодиоды могут указывать состояние, в котором реле находится в данным момент времени. Например, красный – освещение выключено, зеленый – освещение есть. Схема подключение к лампе выглядит так.

Для более крупного проекта лучше применять шину реле, например, восьмиканальный модуль реле 5V.

Контроллер

В качестве контроллера выступает плата Arduino UNO. Для монтажа необходимо знать:

описание элементов;

распиновку платы;

принципиальную схему работы платы;

распиновку микроконтролеера ATMega 328.

Программная настройка

Программирование подключенных элементов Ардуино происходит в редакторе IDE. Скачать его можно с официального сайта. Для программирования можно использовать готовые библиотеки.

Или воспользоваться готовым скетч решением Ardublock – графический язык программирования, встраиваемый в IDE. По сути, вам нужно только скачать и установить ПО, а затем использовать блоки для создания схемы.

1Принцип действияи виды реле

Реле – это электромеханическое устройство для замыкания и размыкания электрической цепи. В классическом варианте реле содержит электромагнит, который управляет размыканием или замыканием контактов. Если в нормальном положении контакты реле разомкнуты, а при подаче управляющего напряжения замыкаются, такое реле называется замыкающим. Если в нормальном состоянии контакты реле сомкнуты, а при подаче управляющего напряжения размыкаются, такой тип реле называется размыкающим.

Принцип действия замыкающего реле

Кроме того, существует множество других видов реле: переключающие, одноканальные, многоканальные, реле постоянного или переменного тока, и другие.

Исходный код программы

Далее приведен полный текст программы. Работа нашего проекта продемонстрирована на видео, приведенном в конце статьи.

Arduino

#include<LiquidCrystal.h> //подключение библиотеки для работы с ЖК дисплеем
#define ledPin 7
LiquidCrystal lcd(8,9,10,11,12,13);
float value = 3035; //Preload timer value (3035 for 4 seconds)
void setup()
{
lcd.begin(16,2);
lcd.setCursor(0,0);
lcd.print(«ARDUINO TIMERS»);
delay(2000);
lcd.clear();

pinMode(ledPin, OUTPUT);
pinMode(2,INPUT);
pinMode(4,INPUT);

noInterrupts(); // отключаем все прерывания

TCCR1A = 0;
TCCR1B = 0;
TCNT1 = value; // preload timer
TCCR1B |= (1 << CS10)|(1 << CS12); // 1024 prescaler (коэффициент деления предделителя)
TIMSK1 |= (1 << TOIE1); // enable timer overflow interrupt ISR (разрешаем вызов процедуры обработки прерывания переполнения счетчика)
interrupts(); // разрешаем все прерывания
}
ISR(TIMER1_OVF_vect) // процедура обработки прерывания переполнения счетчика
{
TCNT1 = value; // preload timer
digitalWrite(ledPin, digitalRead(ledPin) ^ 1); //включаем и выключаем светодиод
}
void loop()
{
if(digitalRead(2) == HIGH)
{
value = value+10; //Incement preload value
}
if(digitalRead(4)== HIGH)
{
value = value-10; //Decrement preload value
}
lcd.setCursor(0,0);
lcd.print(value);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include<LiquidCrystal.h>            //подключение библиотеки для работы с ЖК дисплеем
#define ledPin 7

LiquidCrystallcd(8,9,10,11,12,13);

floatvalue=3035;//Preload timer value (3035 for 4 seconds)

voidsetup()

{

lcd.begin(16,2);

lcd.setCursor(,);

lcd.print(«ARDUINO TIMERS»);

delay(2000);

lcd.clear();

pinMode(ledPin,OUTPUT);

pinMode(2,INPUT);

pinMode(4,INPUT);

noInterrupts();// отключаем все прерывания

TCCR1A=;

TCCR1B=;

TCNT1=value;// preload timer

TCCR1B|=(1<<CS10)|(1<<CS12);// 1024 prescaler (коэффициент деления предделителя)

TIMSK1|=(1<<TOIE1);// enable timer overflow interrupt ISR (разрешаем вызов процедуры обработки прерывания переполнения счетчика)

interrupts();// разрешаем все прерывания

}

ISR(TIMER1_OVF_vect)// процедура обработки прерывания переполнения счетчика

{

TCNT1=value;// preload timer

digitalWrite(ledPin,digitalRead(ledPin)^1);//включаем и выключаем светодиод

}

voidloop()

{

if(digitalRead(2)==HIGH)

{

value=value+10;//Incement preload value

}

if(digitalRead(4)==HIGH)

{

value=value-10;//Decrement preload value

}

lcd.setCursor(,);

lcd.print(value);

}

Шаг 2: Тестирование макетной платы

Теперь, когда мы собрали всё необходимое, нам нужно протестировать электросхему модуля реле на макетной плате. Не пропускайте этот шаг, он необходим во избежание ошибок при пайке на печатной плате и проверки, что всё работает хорошо.

Посмотрите на схему и раскладку печатной платы. Затем соберите всё по схеме на макетной плате. Дважды проверьте, что всё собрано правильно. Я приложил распиновку для резистора BC548 — будьте аккуратны при его подсоединении.

Теперь нам нужно проверить работу собранного устройства:

  1. Скачайте файл relay.ino, затем откройте его в вашем Ардуино.
  2. Соедините пины VCC и GND на модуле реле с соответствующими пинами 5V и GND на Ардуино.
  3. Соедините входной пин реле (он выходит из основания транзистора) с цифровым пином 12 на Ардуино.
  4. Загрузите код.
  5. Проверьте, что реле включается и выключается с интервалом в одну секунду (светодиод на реле будет также загораться и потухать с интервалом в одну секунду)

Если схема не работает, немедленно выключите Ардуино. Затем проверьте всю схему на правильность соединения, если что-то соединено неправильно — исправьте и затем заново включите Ардуино.

Если всё работает как надо, то переходим к сборке схемы на печатной плате общего назначения или специальной печатной плате.

Файлы

Использование стороннего аналогового датчика давления

Редко, но все же случаются ситуации, когда по каким-либо причинам использовать в схеме специализированный сенсор, рассчитанный на работу конкретно с Ардуино, не получается. Скажем, его невозможно найти сразу в близлежащих магазинах электроники, а ждать посылку долго. Выходом могут стать датчики давления, применяемые в автомобильной электронике. Их тоже можно связать непосредственно с микроконтроллером.

Примером послужит WABCO 4410400130 — сенсор указанного плана, используемый на большегрузных фурах. Единственное, требующее внимания в представленной схеме — питание у элемента раздельно с Arduino. В последнем, просто нет требуемых для запуска датчика +24 В. В связи с чем и приходится использовать дополнительный блок энергообеспечения, с правильными и достаточными характеристиками питания — 8–32 V постоянного тока, при минимуме 400 mА мощности.

Что касается соединения сенсора напрямую к плате микроконтроллера — в нем на выходе не более 5 В. И чем больше давление, тем меньший ток будет поступать на аналоговые контакты логического устройства. Вот только, на всякий случай, рекомендуется проверить изначальный выход мультиметром, с целью контроля варианта «пробития» сенсора, с возникновением обстоятельств беспрепятственного связывания OUT с минусом или плюсом питающей детектор линии.

Пример скетча получения информации с аналогового датчика:

Теперь, что касается данных получаемых на выходе скетча. Нужно провести их градацию с использованием классического манометра, оценив какие цифры идут от сенсора при разном давлении и ввести соответствующую формулу в тело программы.

И в окончании, технические характеристики WABCO 4410400130, для сравнения с похожими датчиками Arduino:

  • Тип: пьезоэлемент
  • Питание: 8–32 V
  • Рабочая температура: −40..+80 °С
  • Диапазон измерения: от 0 до 10 bar
  • Точность: 0.2–0.3 %
  • Предельное давление разрушения: 16 bar

Несколько слов о разновидностях

Электронные таймеры для установки задержки включения и отключения используются в микроволновках, стиральных машинах, системах обогрева, для обустройства умного дома и т.д. Принцип действия реле времени основывается на установке временного интервала для задержки в работе электрической сети. На практике такое устройство может иметь различный способ замедления:

электромагнитное;

Рис. 1: электромагнитные реле времени

  • пневматическое;
  • с часовым механизмом;

Рис. 2. С часовым механизмом

  • моторные;
  • электронные.

Из-за сложности настройки и дефицита определенных элементов далеко не все реле времени можно собрать своими руками. Наиболее простым вариантом для изготовления и рассмотрения являются электронные модели, так как достать комплектующие для них сегодня можно как из старого оборудования, так и с любого магазина радиодеталей.

Электромеханические реле и другие варианты доступны в случае наличия специфических комплектующих, которые далеко не всегда можно найти в свободной продаже.

Просадка напряжения

Пытаясь найти объективную причину зависания, я стал грешить на некачественный блок питания и просадку напряжения при включении реле, особенно когда несколько реле включаются одновременно, ведь зависания происходили не так часто, а всего лишь 1-2 раза в месяц.

Первым делом решил добавить 2 конденсатора по 1000 мкф в надежде, что они уменьшат просадку напряжения при срабатывании реле. Первый поставил параллельно выходу с блока питания (там кстати уже был свой конденсатор, но второй лишним не будет, подумал я), а второй — установил параллельно выходу +5V на плате ардуино, откуда как раз берется питание для реле. С этого же выхода питается и сам микроконтроллер. Складывается логичная ситуация — когда все реле включаются одновременно, микроконтроллеру не хватает напряжения и он зависает.

После добавление конденсаторов зависания практически прекратились, но все же, 1 раз в месяц могло и зависнуть.

Таблица подключения к Arduino UNO R3 элементов схемы

Сведем все соединения между Ардуино и внешними устройствами в единую таблицу, которая поможет в деле сборки готовой схемы.

Куда Пин Arduino UNO R3 Пин устройства/контакт
Модуль на 4 реле D0 общее освещение, D1 отопление, D2 свет в кладовке, D3 на улице. D0 D0
D1 D1
D2 D2
D3 D3
Кнопка постановки на сигнализацию/снятия D4
Клавиша включения режима экономии/люди дома D5
D6
Коммуникация с модемом D7 RX
D8 TX
Светодиод охрана отключена(кр) D9
Охрана активирована (зел) D10
Хозяева дома (кр) D11
Режим экономии (зел) D12
Включение модема D13 D9
Геркон кладовка A1
Геркон дверь/калитка A2
Термометр A3
Определение наличия сети 220 В A4

Планируемая система полностью не заняла все пины микроконтроллера. Еще есть место для добавления аналогового датчика и одной линии управления. Вариант — использовать свободные контакты для сенсора дыма и сигнализатора. Если планируется расширять конструкцию дальше, — придется брать микроконтроллер Arduino Mega. В нем больше портов ввода/вывода и памяти, при полной программной совместимости.

1Принцип действияи виды реле

Реле – это электромеханическое устройство для замыкания и размыкания электрической цепи. В классическом варианте реле содержит электромагнит, который управляет размыканием или замыканием контактов. Если в нормальном положении контакты реле разомкнуты, а при подаче управляющего напряжения замыкаются, такое реле называется замыкающим. Если в нормальном состоянии контакты реле сомкнуты, а при подаче управляющего напряжения размыкаются, такой тип реле называется размыкающим.

Принцип действия замыкающего реле

Кроме того, существует множество других видов реле: переключающие, одноканальные, многоканальные, реле постоянного или переменного тока, и другие.

Как использовать релейный модуль с устройствами высокого напряжения

Сначала давайте посмотрим на принципиальную схему. Как описано ранее, мы будем использовать адаптер 5 В в качестве отдельного источника питания для электромагнита, подключенного к JDVcc и заземляющему выводу. Вывод Arduino 5V будет подключен к выводу Vcc модуля, а вывод 7 к входному выводу In1 для управления реле. Теперь для части «высокое напряжение» нам понадобится вилка, розетка и кабель с двумя проводами. Один из двух проводов будет обрезан и подключен к общему и нормально разомкнутому контакту выходного разъема модуля. Таким образом, в этой конфигурации, когда мы активируем реле, мы получим замкнутую и рабочую высоковольтную цепь.

Ниже коснемся того, как сделать кабель. Нам нужны вилка, розетка и кабель. Аккуратно обрезаем кабель и обрезаем один из проводов, как показано на рисунке ниже. Подключаем их к нормально разомкнутым контактам релейного модуля. Также подключаем концы кабеля к вилке и розетке.

Примечание! Убедитесь, что вы используете другие провода, а не желтый и зеленый, так как они предназначены для заземления.

Окончательный вид кабеля, готового к использованию, ниже. Прежде чем использовать кабель, убедитесь, что он работает правильно. Вы можете проверить это с помощью мультиметра или сначала проверить его при низком напряжении.

Платы дополнения (шилды)

Для увеличения возможностей материнских плат используют шилды (Shields) – расширяющие функционал дополнительные устройства. Они изготавливаются под конкретный форм-фактор, что отличает их от модулей, которые подключают к портам. Шилды стоят дороже модулей, однако работа с ними проще. Также они снабжены готовыми библиотеками с кодом, что убыстряет разработку собственных программ управления для “умного дома”.

Шилды Proto и Sensor

Эти два стандартных шилда не привносят каких-либо особых функций. Их используют для более компактного и удобного подключения большого числа модулей.

Proto Shield представляет собой практически полную копию оригинала в плане портов, а посередине модуля можно приклеить макетную плату. Это облегчает сборку конструкции. Такие дополнения существуют для всех полноформатных плат Arduino.

Proto Shield ставят поверх материнской платы. Это незначительно увеличивает высоту конструкции, но экономит много места в плоскости

Но если устройств очень много (более 10), то лучше использовать более дорогие коммутационные платы Sensor Shield.

У них не предусмотрен брэдборд, однако ко всем выводам портов индивидуально подведено питание и земля. Это позволяет не путаться в проводах и перемычках.

Площадь поверхности материнской и сенсор-плат одинакова, однако на шилде отсутствуют чипы, конденсаторы и другие элементы. Поэтому освобождается много места для полноценных подключений

Также на этой плате есть колодки для простого подключения нескольких модулей: Bluetoots, SD-карты, RS232 (COM-port), радио и ультразвука.

Подключение вспомогательного функционала

Шилды с интегрированным в них функционалом рассчитаны на решение сложных, но типовых задач. При необходимости реализации оригинальных задумок лучше все же подобрать подходящий модуль.

Motor Shield. Он предназначен для управления скоростью и вращением маломощных двигателей. Оригинальная модель оснащена одним чипом L298 и может работать одновременно с двумя моторами постоянного тока или с одним сервоприводом. Есть и совместимая деталь от стороннего производителя, у которой два чипа L293D с возможностью управления вдвое большим количеством приводов.

Relay Shield. Часто используемый модуль с системах “умный дом”. Плата с четырьмя электромеханическими реле, каждое из которых допускает прохождение тока с силой до 5А. Этого достаточно для автоматического включения и отключения киловатных приборов или линий освещения, рассчитанных на переменный ток 220 В.

LCD Shield. Позволяет выводить информацию на встроенный экран, который можно проапгрейдить до TFT-устройства. Это расширение часто применяют для создания метеостанций с показаниями температуры в различных жилых помещениях, пристройках, гараже, а также температуры, влажности и скорости ветра на улице.

В LCD Shield встроены кнопки, позволяющие запрограммировать листание информации и выбор действий для подачи команд на микропроцессор

Data Logging Shield. Основная задача модуля – записывать данные с датчиков на полноформатную SD-карту объемом до 32 Gb с поддержкой файловой системы FAT32. Для записи на микро-SD карту нужно приобрести адаптер. Этот шилд можно использовать как хранилище информации, например, при записи данных с видеорегистратора. Производство американской фирмы Adafruit Industries.

SD-card Shield. Более простая и дешевая версия предыдущего модуля. Такие расширения выпускают многие производители.

EtherNet Shield. Официальный модуль для связи Arduino с Интернетом без участия компьютера. Есть слот для микро-SD карты, что позволяет записывать и отправлять данные через всемирную сеть.

Wi-Fi Shield. Позволяет осуществлять беспроводной обмен информацией с поддержкой режима шифрования. Служит для связи с интернетом и устройствами, которыми можно управлять через Wi-Fi.

GPRS Shield. Этот модуль, как правило, используют для связи “умного дома” с владельцем по мобильному телефону через SMS сообщения.

Пример для Arduino

В качестве мозга для управления реле рассмотрим платформу Arduino Uno.

Схема подключения

Подключите мини-реле к цифровому пину платформы Arduino. Для любителей надёжности, линии питания и управление реле мы вывели на специальный клеммник.

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield. А для коммуникации используйте трёхпроводной шлейф «мама-папа», который идёт в комплекте с реле.

А если вы уже отладили устройство и планируете упаковать всю конструкцию в корпус, рекомендуем взять Srew Shield и надёжно зафиксировать все сигналы через соединительные провода «мама-папа».

Исходный код

Прошейте платформу Arduino скетчем приведённым ниже.

relayBlink.ino
// пин подключения реле
#define RELAY_PIN 8
 
void setup() {
  // настраиваем пин реле в режим выхода
  pinMode(RELAY_PIN, OUTPUT);
}
 
void loop() {
  // подаём на пин реле «высокий уровень»
  digitalWrite(RELAY_PIN, HIGH);
  // ждём одну секунду
  delay(1000);
  // подаём на пин реле «низкий уровень»
  digitalWrite(RELAY_PIN, LOW);
  // ждём одну секунду
  delay(2000);
}

После загрузки скетча реле начнёт по циклу включатся на одну секунду и выключаться на две.

Функции, реализованные в проекте

  • Комплексное управление городской квартирой
  • Управление системой из веб-интерфейса
  • Адаптивный дизайн для использования на планшетах и смартфонах
  • Отсылка тревожных и информационных SMS сообщений
  • Сохранение настроек в энергонезависимой памяти системы

Режимы присутствия людей в доме

  • Режимы «присутствие» и «отсутствие» людей в доме
  • Смена режима в веб-интерфейсе
  • Возможность отложенной смены режима с регулируемой задержкой срабатывания

Отопление

  • Управление отоплением 5-и помещений и зон в квартире
  • Управление работой тёплых полов в 5-и помещениях
  • Автоматическое поддержание заданной температуры
  • Установка параметров отопления в веб-интерфейсе
  • Регулировка температуры в зависимости от режима присутствия людей
  • Дополнительное разбиение режимов на 2 поддиапазона «высокий» и «низкий»
  • Задание матрицы целевых температур в веб-интерфейсе
  • Задание матрицы «высоких» и «низких» режимов для каждого времени суток
  • Регулировка температуры с учётом матрицы высоких и низких подрежимов
  • Контроль текущей и целевой температуры в реальном времени на веб-странице
  • Задание допустимых лимитов отклонения температуры в веб-интерфейсе
  • Индикация текущих нарушений температурных лимитов на веб-странице
  • Отсылка тревожных SMS при нарушении лимитов отклонения температур

nRF24 сеть

  • Поддержка работы nRF24 сети
  • Использование нативного AMS nRF24 беспроводного стека и протокола
  • Использование беспроводных батарейных AMS nRF24 датчиков
  • Удалённый контроль «здоровья» беспроводных датчиков
  • Отслеживание активности и ошибок беспроводных датчиков
  • Использование беспроводных AMS nRF24 контроллеров

Управление двумя санузлами

  • Защита от протечек
  • Автоматическое перекрытие клапана при протечках воды
  • SMS оповещение при аварийных ситуациях с протечками воды
  • Управление вентиляцией санузлов
  • Автоматический и ручной режимы вентиляции
  • Задание задержки отключения вентиляции в веб-интерфейсе
  • Задание критической влажности для включения вентиляции в веб-интерфейсе
  • Управление освещением санузлов
  • Автоматический и ручной режимы работы освещения
  • Задание задержки отключения освещения в веб-интерфейсе

Управление зимним садом на балконе

  • Определение температуры и влажности на улице
  • Поддержание заданной температуры на балконе
  • Алгоритм обогрева, учитывающий множество параметров

Работа со временем

  • Получение и синхронизация времени через интернет
  • Отслеживание временных интервалов
  • Отслеживание времени суток
  • Отслеживание времени восхода и захода солнца
  • Задание часов и минут наступления каждого времени суток в веб-интерфейсе

СМС сообщения и команды

  • Интеграция с AMS СМС сервером
  • Отсылка информационных и тревожных СМС на мобильный телефон
  • Приём управляющих команд от СМС сервера

Сетевая работа

  • Интеграция с другими контроллерами сети
  • Приём управляющих команд по сети от других контроллеров
  • Отсылка управляющих команд другим контроллерам сети

Исходный код программы (скетча)

Код программы достаточно простой, я думаю, у вас не возникнет с ним сложностей.

Arduino

int LED = 7;
int reed_switch = 4;
int reed_status;
void setup()
{
pinMode(LED, OUTPUT);
pinMode(reed_switch, INPUT);
}
void loop()
{
reed_status = digitalRead(reed_switch);
if (reed_status == 1)
digitalWrite(LED, LOW);
else
digitalWrite(LED, HIGH);
delay(1000);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

intLED=7;

intreed_switch=4;

intreed_status;

voidsetup()

{

pinMode(LED,OUTPUT);

pinMode(reed_switch,INPUT);

}

voidloop()

{

reed_status=digitalRead(reed_switch);

if(reed_status==1)

digitalWrite(LED,LOW);

else

digitalWrite(LED,HIGH);

delay(1000);

}

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector