Cmos-сенсор

Что это такое?

Матрица фотоаппарата — это примерно то же самое, что сердце или мозг для живого организма, что двигатель для автомобиля или крыша в доме. Если она не работает или работает некачественно, исправность всех остальных частей фотокамеры не имеет никакого значения. К сведению: в ряде источников употребляется еще термин «сенсор» или «датчик». Если не оговаривается, что это за «сенсор» конкретно, то подразумевается как раз матрица.

Она устроена очень сложно, ведь это микросхема, образованная фотодиодами. Интенсивность светового потока определяет интенсивность вырабатываемого электрического сигнала. Собственно, для его выработки матрица и нужна. При ее поломке, как уже ясно, любой фотоаппарат — бесполезный кусок металла, пластика и стекла. Преобразование импульса в цифровой сигнал происходит при помощи специального устройства; оно или встраивается в матрицу, или находится отдельно.

Свет преобразуется в биты по специальному протоколу. На один светодиод приходится один пиксель изображения. Чтобы добиться получения цветной картинки, основной части матрицы «помогают» специальные фильтры. С точки зрения оптики, матрица — точный аналог пленки, использовавшейся в старых фотокамерах. Отличаются только внутренние физические процессы и отсутствуют химические изменения, а работа со светом происходит полностью идентично.

Основополагающим параметром сенсора является так называемая характеристическая кривая, прямо связанная с фотографической широтой. Эта линия проложена между крайними точками правильной экспозиции. При выходе за эти пределы кривая на графике будет изгибаться. На снимках это проявляется существенным падением контрастности. В цифровой фотографии дополнительные ограничения накладывают и свойства аналого-цифровых преобразователей.

Немного о производителях матриц

На рынке видеорегистраторов существует 4 основных производителя матриц:

  • Sony – японская транснациональная корпорация, образованная еще в 1946 году. По сути не нуждается в представлении. Выпуском CMOS-матриц компания начала заниматься с 2007 года;
  • OmniVision – американская компания, основанная в 1990 году. Второй по популярности производитель на рынке. Главное направление компании – разработка матриц для цифрового оборудования (видеонаблюдение, регистраторы, экшн-камеры);
  • Aptina – американская компания, специализирующаяся на выпуске CMOS-матриц, а также видеопроцессоров. С 2014 года принадлежит On Semiconductor;
  • On Semiconductor – американская компания, основанная в 1999 году. Матрицы данного производителя зачастую встречаются и  в видеорегистраторах. Выпускаются сенсоры под маркировкой AR. Из наиболее популярных можно отметить: AR0330CS, AR0522SR и прочие.

Это основные компании производители матриц для видеорегистраторов, если видите в характеристиках одно из этих названий, то смело можно брать.

Эволюция CCD

С момента изобретения CCD лабораторией Белла (Bell Laboratories, или Bell Labs) в 1969 г. размеры сенсора изображения непрерывно уменьшались. Одновременно увеличивалось число чувствительных элементов. Это естественно вело к уменьшению размеров единичного чувствительного элемента (пикселя), а соответственно и его чувствительности. Например, с 1987 г. эти размеры сократились в 100 раз. Но благодаря новым технологиям чувствительность одного элемента (а следовательно, и всей матрицы) даже увеличилась.

Что позволило доминировать С самого начала CCD стали доминирующими сенсорами, поскольку обеспечивали лучшее качество изображения, меньший шум, более высокую чувствительность и большую равномерность параметров пикселей. Основные усилия по совершенствованию технологии были направлены на улучшение характеристик CCD.

Как растет чувствительность По сравнению с популярной матрицей Sony HAD стандартного разрешения (500х582) конца 1990-х гг. (ICX055) чувствительность моделей более совершенной технологии Super HAD выросла почти в 3 раза (ICX405) и Ex-view HAD – в 4 раза (ICX255). Причем для черно-белого и цветного варианта.

Для матриц высокого разрешения (752х582) успехи несколько менее впечатляющие, но если сопоставлять модели цветного изображения Super HAD с самыми современными технологиями Ex-view HAD II и Super HAD II, то рост чувствительности составит в 2,5 и 2,4 раза соответственно. И это несмотря на уменьшение размеров пикселя почти на 30%, поскольку речь идет о матрицах самого современного формата 960H с увеличенным количеством пикселей до 976х582 для стандарта PAL. Для обработки такого сигнала Sony предлагает ряд сигнальных процессоров Effio.

Добавилась ИК-составляющая Одним из эффективных методов роста интегральной чувствительности является расширение спектральных характеристик чувствительности в область инфракрасного диапазона. Это особенно характерно для матрицы Ex-view. Добавление ИК-составляющей несколько искажает передачу относительной яркости цветов, но для черно-белого варианта это не критично. Единственная проблема возникает с цветопередачей в камерах «день/ночь» с постоянной ИК-чувствительностью, то есть без механического ИК-фильтра.

Развитие этой технологии в моделях Ex-view HAD II (ICX658AKA) в сравнении с предыдущим вариантом (ICX258AK) обеспечивает рост интегральной чувствительности всего на 0,8 дБ (с 1100 до 1200 мВ) с одновременным увеличением чувствительности на длине волны 950 нм на 4,5 дБ. На рис. 1 приведены характеристики спектральной чувствительности этих матриц, а на рис. 2 – отношение их интегральной чувствительности.

Оптические инновации Другим методом роста чувствительности CCD являются увеличение эффективности пиксельных микролинз, светочувствительной области и оптимизация цветовых фильтров. На рис. 3 представлено устройство матриц Super HAD и Super HAD II, показывающее увеличение площади линзы и светочувствительной области последней модификации.

Дополнительно в матрицах Super HAD II значительно увеличено пропускание светофильтров и их устойчивость к выцветанию. Кроме того, расширено пропускание в коротковолновой области спектра (голубой), что улучшило цветопередачу и баланс белого.

На рис. 4 представлены спектральные характеристики чувствительности матриц Sony 1/3″ Super HAD (ICX229AK) и Super HAD II (ICX649AKA).

Размер матрицы

Самая важная характеристика. Любой приемник излучения обладает шумами, т. е. на полезный сигнал всегда накладывается паразитный шум. Матрица не является исключением. Из теории известно, что чем больше света поступает в приемник излучения, тем меньше относительное влияние шума. Отсюда следует очевидный вывод: чем больше площадь чувствительного элемента, тем больше на него падает света, тем меньше шум.

Таким образом, чтобы матрица меньше «шумела», она должна иметь больший размер и меньше пикселей. Рассмотрим, какие размеры имеют современные матрицы.

Исторически сложилось так, что вместо того, чтобы просто указать размеры, например в миллиметрах, для обозначения размеров матриц видеокамер используются малопонятные и запутанные величины типа 1/4”, 1/3”, 1/2,8”. Это длина диагонали матрицы в долях дюйма. Рекомендация здесь одна: покупайте видеокамеру с большей матрицей.

Как проверить на битые пиксели?

Как бы ни старались производители, пыль и другие факторы, просто повседневная эксплуатация неизбежно будут сказываться на характеристиках матриц. Их обязательно надо проверять на битые и горячие пиксели. Такая проверка зеркального фотоаппарата производится следующим образом:

  • отключают подавление шумов;
  • чувствительность матрицы выставляют на минимум или на близкое к нему значение;
  • задают ручной режим экспозиции;
  • выключают автофокус.

На снимке с выдержкой 1/3 секунды не должно быть цветных или серых точек. Обнаружив хотя бы несколько таких включений, надо ознакомиться с кадром, сделанным при выдержке 1/60. Если там подозрительных точек нет или существенно меньше, можно считать, что первая стадия оценки прошла успешно. На самой длинной выдержке даже у полностью исправной матрицы неизбежно обнаружится 5 или 6 цветных точек. Таковы неизбежные физические процессы, и они не ухудшат каким-либо образом картинку.

Цветные точки могут появляться при высокой чувствительности. Так тоже проявляются горячие пиксели. Но это компенсируется очень легко — достаточно включить шумоподавитель. Проблемой являются видимые при средней выдержке и малом ISO многочисленные точки. Когда их больше 5 штук, стоит отложить камеру и приступить к проверке другого фотоаппарата, иначе деньги будут брошены на ветер.

В следующем видео смотрите о матрице фотоаппарата.

Методы получения цветного изображения

Сам по себе пиксель фотоматрицы является «чёрно-белым». Для того, чтобы матрица давала цветное изображение, применяются специальные технические приёмы.

Трёхматричные системы

Основная статья: 3CCD


Пример работы дихроической призмы

Поступающий в камеру свет, попадая на пару дихроидных призм, делится на три основных цвета: красный, зелёный и синий. Каждый из этих пучков направляется на отдельную матрицу (чаще всего используются CCD матрицы, поэтому в наименовании соответствующей аппаратуры употребляется обозначение 3CCD).

Трёхматричные системы применяются в видеокамерах среднего и высокого класса.

Достоинства трёх матриц по сравнению с одноматричными

  • лучше передача цветовых переходов, полное отсутствие цветного муара;
  • выше разрешение: отсутствует необходимый для устранения муара размывающий (low-pass) фильтр;
  • выше светочувствительность и меньший уровень шумов;
  • возможность введения цветокоррекции постановкой дополнительных фильтров перед отдельными матрицами, а не перед съёмочным объективом, позволяет добиться существенно лучшей цветопередачи при нестандартных источниках света.

Недостатки трёх матриц по сравнению с одноматричными

  • принципиально бо́льшие габаритные размеры;
  • трёхматричная система не может использоваться с объективами с малым рабочим отрезком;
  • в трёхматричной схеме есть проблема сведе́ния цветов, так как такие системы требуют точной юстировки, причём, чем большего размера матрицы применяются и чем больше их физическое разрешение, тем сложнее добиться необходимого класса точности.

Матрицы с мозаичными фильтрами

Основная статья: Массив цветных фильтров

Во всех таких матрицах пиксели расположены в одной плоскости, и каждый пиксель накрыт светофильтром некоего цвета. Недостающая цветовая информация восстанавливается путём интерполяции (подробнее…

).

Существует несколько способов расположения светофильтров. Эти способы различаются чувствительностью и цветопередачей, при этом чем выше светочувствительность, тем хуже цветопередача:

  • RGGB — фильтр Байера, исторически самый ранний;
  • RGBW имеют более высокую чувствительность и фотографическую широту (типично выигрыш чувствительности в 1,5—2 раза и 1 ступень по фотографической широте), частный случай RGBW-матрицы — CFAK-матрица компании Kodak;
  • RGEB (красный — зелёный — изумрудный — синий);
  • CGMY (голубой — зелёный — лиловый — жёлтый).

Матрицы с полноцветными пикселами

Существуют две технологии, позволяющие получать с каждого пикселя все три цветовые координаты. Первая применяется в серийно выпускаемых камерах фирмы Sigma, вторая — на середину 2008 года существует только в виде прототипа.

Многослойные матрицы (Foveon X3)

Основная статья: Foveon X3

Фотодетекторы матрицы X3 компании Foveon расположены в три слоя — синий, зелёный, красный. Название сенсора «Х3» означает его «трёхслойность» и «трёхмерность».

Матрицы X3 применяются в цифровых фотоаппаратах Sigma.

Полноцветная RGB-матрица Nikon

В полноцветных матрицах Nikon (патент Nikon от 9 августа 2007) лучи RGB предметных точек в каждом пикселе, содержащем одну микролинзу и три фотодиода, проходят через открытую микролинзу и падают на первое дихроичное зеркало. При этом синяя составляющая пропускается первым дихроичным зеркалом на детектор синего, а зелёная и красная составляющие отражаются на второе зеркало. Второе дихроичное зеркало отражает зелёную составляющую на детектор зелёного, и пропускает красную и инфракрасную составляющие. Третье дихроичное зеркало отражает красную составляющую на детектор и поглощает инфракрасную составляющую.

Несмотря на то, что прототип матрицы уже создан (2008 год), этот патент вряд ли найдёт своё применение в ближайшее время из-за существенных сложностей в технологии.

По сравнению со всеми прочими системами, кроме трёхматричных, данная технология имеет потенциальное преимущество в эффективности использования светового потока по сравнению с технологиями RGBW или фильтром Байера. (Точный выигрыш зависит от характеристик пропускания фильтров).

По сравнению с Foveon X3, данная технология выигрывает в качестве цветопередачи.

По сравнению с 3CCD системами, данный тип матрицы выигрывает в возможности использования в зеркальных аппаратах и в отсутствии необходимости точной юстировки оптической системы.

Преимущества КМОП-матрицы:

  • Прежде всего значительно снижено энергопотребление, благодаря тому, что в КМОП-матрице цепочка обработки информации не такая длинная, как в ПЗС-матрице, особенно низким энергопотреблением КМОП-матрица отличается в статическом режиме.

  • Схема ячейки КМОП-матрицы позволяет ее интегрировать непосредственно с аналого-цифровым преобразователем и даже с процессором. Это создает возможность объединения в одном кристалле как аналоговой схемы, так и цифровой и обрабатывающей. Благодаря этому стала возможной дальнейшая миниатюризация цифровых камер,снижение их стоимости из-за отсутствия необходимости в дополнительных процессорных микросхемах.

  • Возможность произвольного доступа к ячейкам КМОП позволяет считывать отдельные группы пикселей. Эта возможность получила название кадрированного считывания, т. е. считывания только части всего кадра, в отличие от ПЗС-матрицы, где для обработки информации необходимо выгрузить всю матрицу. Благодаря этому для обеспечения быстрого просмотра изображения на встроенном дисплее фотоаппарата с относительно небольшим числом пикселей можно выводить только часть информации. Для просмотра этого будет достаточно, можно контролировать точность фокусировки и т. д.

  • Кроме того для большей скорости ведения репортажной съемки можно вести ее с меньшим размером кадра и меньшим разрешением.

  • Еще одним достоинством КМОП-матрицы является возможность добавления к имеющемуся внутри КМОП-элемента усилителю еще усилительные каскады, тем самым значительно увеличить чувствительность матрицы. А возможность регулировки усиления для каждого цвета позволяет улучшить баланс белого.

  • Производство КМОП-матриц проще и дешевле, чем ПЗС, его может освоить практически любой завод, занимающийся производством микроэлектроники. Особенно это сказывается при производстве матриц большого размера.

Недостатки КМОП-матрицы:

  • К недостаткам КМОП-матрицы по сравнению с ПЗС-матрицей следует отнести прежде всего уменьшение светочувствительной части элемента из-за наличия электронной обвязки вокруг пиксела. Именно поэтому вначале КМОП-матрицы имели существенно более низкую чувствительность, чем ПЗС-матрицы. Положение изменилось с разработкой и выпуском на рынок компанией Sony  в 2007 году  КМОП-матриц, изготовленных по технологии EXMOR, применявшейся ранее для специфических устройств, таких как электронные телескопы. Размер светочувствительной части пиксела удалось увеличить за счет перемещения электронной обвязки в нижний слой элемента, где она не мешала попаданию света. Это привело к увеличению чувствительности каждого пиксела и всей матрицы.

  • В каждом из элементов КМОП-матрицы имеются еще электронные элементы, которые по свойствам электронных схем обладают своим шумом, и этот шум добавляется к шуму непосредственно светочувствительного элемента. Причем для каждого пиксела уровень этого шума разный.

  • Величина сигнала,получаемого с каждого пиксела зависит не только от характеристик самого фотодиода, но и от свойств каждого элемента электронной обвязки пиксела. Отсюда получается , что у каждого КМОП-элемента своя характеристическая кривая (отражающая соответствие сигнала, получаемого с элемента яркости падающего на него света), а в целом пиксели матрицы имеют разброс по чувствительности, что приводит к т. н. структурному шуму. Из-за этого поначалу КМОП-матрицы имели более низкое разрешение, чем ПЗС-матрицы.

  • Наличие на каждом пикселе дополнительных электронных элементов приводит к дополнительному нагреву всей ячейки, что является причиной теплового шума.

Таким образом каждый тип матриц имеет свои достоинства и недостатки. В настоящее время они по своим характеристикам все более сближаются. И по-видимому при выборе фотокамеры следует исходить не столько из типа матрицы, сколько из ее размера и разрешения.

На закуску предлагаю посмотреть видеоролик, который наглядно демонстрирует различия в передаче информации в ПЗС-матрице и КМОП-матрице:

Типы матриц

По технологии считывания и используемым полупроводникам выделяют два основных вида матрицы:

  • Прибор зарядовой связи или ПЗС (CCD);
  • Комплиментарный металл-оксид-полупроводник или КМОП-матрица (CMOS).

Матрица фотоаппарата типа ПЗС имеет невысокую стоимость и постепенно уходит в прошлое. В камерах, оснащенных ей, считывается с каждой ячейки последовательно, поэтому время выдержки значительное. По этой причине делать быстро кадры не получится, а если недостаточно освещения, то придется .

КМОП-матрица фотоаппарата появилась на рынке относительно недавно (2008 год), хотя разработка технологии началась еще в 1993 году. Принцип работы основывается на выборке отдельных пикселей и схож с работой карты памяти. Зачастую полноразмерные матрицы изготовляют именно по этой технологии, так как нет потери низа, верха и боковых границ. Она позволяет делать кадры с малой выдержкой. Сам полупроводник светочувствительный и работает тихо.

Live-MOS-матрица фотоаппарата является улучшенной версией КМОП. Имеет небольшое количество соединений, светочувствительная, потребляет немного энергии.

Используется, производиться исключительно компанией «Panasonac». За счет того, что размеры матрицы небольшие, фотоаппараты с ней имеют компактные размеры.

Live-MOS имеет недостатки. Из-за того, что на каждый пиксель выделена отдельная электрическая цепь, на изображении часто появляется шум и возникает перегрев.

Super CCD-матрица камеры имеет пиксели с восьми углами, часть из которых зеленого цвета, маленького и большого размера. Остальные пиксели синего и красного цвета совпадают по размеру с малыми пикселями зеленого цвета. За счет разного размера увеличивается фотографическая широта, а коэффициент заполнения пикселями равняется 100%. Из-за сложного принципа считывания сигнала, камеры с этой матрицей потребляют большое количество энергии и дорого обходятся для производителя.

QuantumFilm. Эти типы матриц фотоаппаратов изготовляются на основе кремния и квантовых точек. Именно последние позволяют захватить световые лучи практически на 100%. Отсюда высокая резкость изображения даже при низкой освещенности. Сенсор за счёт наличия квантовых точек имеет компактные размеры.

Стоит отметить, что человеческий глаз не заметит принципиальных различий между разными матрицами. Главное отличие в них – процесс производства.

Тип матрицы фотоаппарата классифицируют в зависимости от светофильтра:

  • RGB, встречается чаще всего;
  • RGBW, позволяет получить хорошие кадры даже при низкой освещенности;
  • С фильтрами Байера RGBE, имеет много зеленых пикселей, благодаря чему цветность кадра максимально приближена к естественным оттенкам.

RGB расшифровывается как красный – зеленый – синий. На базе смешивания этих трех базовых цветов формируются все остальные.

Приставка «W» означает «белый», то есть светофильтр имеет дополнительный белый фотодиод. На что это влияет? Матрицы, где белых фотодиодов до 50%, сокращают потерю света примерно на 1/3. У камер с RGBW лучшее соотношение шум-сигнал. Недостаток – утрата мелких цветных деталей при нормальном освещении.

Частота кадров и работа с окном

Частота кадров зависит от частоты синхроимпульсов, времени кадровой задержки (ВКЗ) и времени строковой задержки (ВСЗ). Длительность периода кадров можно вычислить следующим образом:

Кадровый период = ВКЗ + Число строк * (ВСЗ + Число пикселов * частота синхроимпульсов)

Пример: считывание изображения при полном разрешении при номинальной скорости (частота пикселов 80 МГц = 12,5 нс, GRAN<1:0>=10):

Кадровый период = 7,8 мкс + 480 * (400 нс + 12,5 нс * 640) = 4,039 мс => 247,6 кадров в секунду

Если видео сенсор работает в режиме выборки с уменьшенным разрешением, то ВСЗ увеличивается на 8 периодов синхроимпульсов. Для расчёта максимальной частоты кадров для произвольного размера окна, нужо в эту формулу подставить требуемые значения X и Y области интереса.

Параметры для расчёта частоты кадров

Параметр Примечание Пояснение
ВКЗ Время кадровой задержки 1200 периодов синхроимпульсов для GRAN<1:0> = 11
624 периода синхроимпульсов для GRAN<1:0> = 10
336 периодов синхроимпульсов для GRAN<1:0> = 01
192 периода синхроимпульсов для GRAN<1:0> = 00
ВСЗ Время строковой задержки 48 периодов синхроимпульсов для GRAN<1:0> = 11
32 периода синхроимпульсов для GRAN<1:0> = 10
24 периода синхроимпульсов для GRAN<1:0> = 01
20 периодов синхроимпульсов для GRAN<1:0> = 00
Число строк Число строк, считываемых в каждом кадре
Число пикселов Число пикселов, считываемых в каждой строке
Период синхроимпульсов 1/80 МГц = 12,5 нс

Работа с окном

Используя интерфейс SPI, можно организовать работу с окном. Через этот интерфейс загружаются начальная точка (координаты X и Y) окна и его размер. Минимальный шаг в направлении X составляет 8 пикселов (только числа, делящиеся на 8 могут быть использованы в качестве адреса начала/остановки). Минимальный шаг в направлении Y составляет одну строку (возможна адресация любой строки) в обычном режиме и две строки в режиме выборки с уменьшенным разрешением. Размер окна в направлении X загружается в регистр NB_OF_PIX, размер окна в направлении Y определяется регистром FT_TIMER.

Характерные значения для частоты кадров при GRAN<1:0> = 10

Размер окна (X х Y) Частота кадров (Гц) Время считывания кадра Комментарий
640 х 480 247,5 4038 мкс

640 х 240 488,3 2048 мкс Выборка с уменьшенным разрешением
256 х 256 1076 929 мкс Работа с окном
256 х 80 3380 296 мкс Работа с окном
80 х 80 8347 120 мкс Работа с окном
40 х 40 22830 44 мкс Работа с окном
1 х 8 120480 8 мкс Работа с окном

Аналого-цифровой преобразователь

В видео сенсоре имеется четыре встроенных конвейерных 10-битных АЦП. Эти АЦП работают при номинальной частоте выборки 20 МГц. Входной диапазон АЦП – от 0,75 В до 1,75 В. Выборка аналогового входного сигнала производится через 2,1 нс после нарастающего фронта управляющего строба АЦП. Цифровые данные на выходе появляются через 5,5 периодов синхроимпульса. Это соответствует 6-му спадающему фронту после момента выборки. Данные задерживаются на 3,7 нс относительно этого спадающего фронта.

Параметры АЦП

Параметр Значение
Скорость обработки данных 20*106 выборок/сек
Диапазон входных напряжений 0,75 В – 1,75 В
Разрешение оцифровки 10 бит
Дифференциальная нелинейность Тип. < 0,3 значения наименьшего разряда
Интегральная нелинейность Тип. < 0,7 значения наименьшего разряда

Физический размер матрицы

На качество снимком влияет не только тип матрицы, но и ее размер. Обозначается он в дюймах.

Размер матрицы фотоаппарата напрямую зависит от количества и размера пикселей. Размер пикселей зависит от того, какой светочувствительностью он наделен. И чем больше пиксели по размеру, тем больше световых лучей они могут собрать. Соответственно, чем больше матрица, тем меньше шума на снимках и больше светочувствительность.

Полная матрица равна кадру снимка пленочным фотоаппаратом в 35 мм (2,4Х3,6 см) или crop 1. После появления цифровых камер, принцип работы не изменился, только пленку сменила матрица. Но, полномерный фотодатчик имеет большие размеры, вес и производители пошли на уменьшение его размера.

Если размер матрицы фотоаппарата меньше стандартного, то она называется кроп-фактор, в обиходе «камера с кропнутой матрицей». Значение отображает во сколько раз фотодатчик меньше кадра пленки.

Самые распространенные модели фотоаппаратов имеют кроп-фактор размером 1,3; 1,5; 1.6 и 2, то есть меньше пленочного кадра в 1,3 раза и так далее. Хотя на рынке представлены модели с полноразмерной матрицей и называются они полнокадровыми цифрозеркальными аппаратами.

Размеры матриц фотоаппаратов компактного типа меньше полноценного фотодатчика в 25 раз.

Таблица самых распространенных размеров:

Физический размер матрицы видеокамеры, фотоаппарата влияет на общий вес камеры и габаритные размеры.

Заключение

Что такое матрица? Это светочувствительное сенсорное устройство, отвечающее за преобразование полученного светового сигнала в цифровой.

Она представляет собой большое количество светочувствительных элементов, которые называют «пиксели». Каждый из них формирует одну точку на кадре.

Существует два основных вида матриц: ПЗС и КМОП. Отличаются они последовательностью считывания информации. По второй классификации, матрицы разливают по светофильтрам на: RGB, RGBW и RGBE. При работе с мало освещенными предметами, преимущество имеют матрицы с фильтром RGBW.

Следующий критерий, который влияет на итоговое изображение – физический размер фотосенсора. Во-первых, размер влияет на цифровой шум, чем меньше размер матрицы, тем шум больше. Во-вторых, полномерные матрицы весят больше, чем те, что устанавливаются в компактной технике. Фотоаппарат с матрицей 1/1,8 будет весить намного меньше, чем с фотосенсором размером 4/3.

Несомненно, количество пикселей влияет на качество картинки, но при малых размерах матрицы, на снимках будет появляться шум, и они будут обрезаться по широте.

Значение ISO определяет . Самые высокие показатели рекомендованы для ночной съемки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector