Пожарный аспирационный извещатель: устройство и преимущество

Основные элементы пожарного извещателя

Как ранее я уже указывал, извещатель состоит из:

  • блока с индикаторами
  •  трубопровода

Сам блок крепиться на вертикальной поверхности и закрыт передней крышкой, которую можно открыть с помощью специального ключа. 

Трубопровод  выполнен диаметром ¾» или 25 мм из пластика ABS, ПВХ, меди, нержавеющей стали и.т.д в зависимости от условий в которых будет производиться эксплуатация.

В комплекте к трубопроводу необходимо будет так же подобрать фасонные изделия и крепления трубопровода.

Для крепления трубопроводов используются клипсы, хомуты, скобы и.т.д все зависит от того как располагается трубопровод.

В качестве «фасонины» применяются такие же аксессуары как и на всех трубах. Это переходы, тройники, заглушки, отводы и.т.д

В пыльных зонах дополнительно можно установить внешний фильтр 02-FLU1, а для зоны с повышенной влажностью устройство для защиты центрального блока  от конденсата.

Так же есть капиллярные трубки которые  можно использовать за подвесным(фальш) потолком, при заказе не забудьте указать в спецификации гнездо с адаптером для капилляра 02-1012-00.

Сам извещатель адресный, установка адресов производиться декадным переключателем. Весь монтаж и установка извещателя должна производиться по действующим нормативам (ГОСТ, СНиП, СП).

В заключении хотелось бы отметить что настройка датчика немного капризная, поэтому перед началом работ необходимо ознакомится с руководством по установке и обслуживанию аспирационного дымового извещателя.

В целом датчик установленный на объекте несколько лет назад исправно работает и сейчас. Главное не забывать о том что каждой системе необходимо проводить Техническое обслуживание.

УСТРОЙСТВО ПРОТИВОПОЖАРНЫХ СИСТЕМ

Система пожарной сигнализации, независимо от типа, состоит из пожарных извещателей (датчиков, детекторов) и приемно-контрольного устройства, которое осуществляет обработку поступающих сигналов и выводит соответствующую информацию на индикаторную панель.

Наиболее распространенными пожарными извещателями являются:

Реагируют на появление в воздухе таких продуктов горения, как твердые микрочастицы. Определяют факт возгорания на ранней стадии еще до появления открытого пламени. Не эффективны, если в помещении имеются легко воспламеняемые вещества, быстро переходящие от тления в стадию активного горения и распространения огня.

Детекторы угарного газа.

Определяют наличие в воздухе монооксида углерода. Данные устройства являются довольно дорогостоящими и входят в состав АПС только на объектах с высокими требованиями к пожарной безопасности.

Температурные (тепловые).

Принцип действия наиболее дешевых устройств основан на разрушении под воздействием температуры легкоплавкой вставки между двумя контактами. Срабатывание электрических пороговых моделей основано на изменении электростатических свойств металлических сплавов под воздействием температуры.

Такие устройства могут быть как точечными, так и линейными (термочувствительный кабель). Более дорогостоящие аналоговые устройства действуют практически по тому же принципу, но контроль над изменением состояния металлической пластины осуществляется постоянно, а получаемая информация пересылается на ПКП.

Датчики пламени.

Улавливают излучение в характерном для открытого пламени диапазоне. Устанавливаются в помещениях, где высока вероятность образования очага возгорания с минимальным выделением дыма.

Комбинированные.

Реагируют на совокупность нескольких параметров. Как правило, это сочетание температуры и задымления. Являются надежными приборами с низким количеством ложных срабатываний. Чаще всего производятся в виде автономных модулей для контроля ситуации в небольших закрытых помещениях.

Линейные дымовые извещатели

Для дымовых линейных извещателей ширина защищаемой зоны определена как в СП 5.13130.2009 равная 9 м без изменений (п. 6.6.18). Максимальная высота защищаемого помещения так же остается равной 21 м, но исключено требование о размещении линейных извещателей в два яруса при высоте помещения более 12 м. 

Также исключена необходимость подтверждения расчетом возможность размещения линейных дымовых извещателей ниже 0,6 м от перекрытия. В этом случае расстояние между оптическими осями извещателей должно составлять не более 25 % от высоты установки извещателей и от стены – не более 12,5 % (рис. 4) . 

Таким образом в помещении выстой 21 м можно располагать линейные извещатели ниже ферм на высоте, допустим 18 м, с расстояниями между извещателями 18 х 0,25 = 4,5 м. Т.е. при двойном количестве извещателей, как при двух ярусах, но без подтверждения каким-либо расчетом. Одновременно запрещается установка линейных дымовых извещателей на сэндвич-панели.

Рис. 4. Расстановка линейных дымовых извещателей на нижнем уровне

Данная расстановка линейных дымовых извещателей определена исходя из модели распространения дыма от очага изображенной на рис. 5. Дым от очага, за счет конвекции, поднимается вверх, угол конуса распространения дыма принимается равным 22°. Соответственно, на высоте Н радиус площади, заполненной дымом, будет равен 0,2Н, соответственно диаметр равен 0,4H. Таким образом, оси линейных дымовых извещателей располагаются на расстояниях меньше диаметра распространения дыма на высоте H, что гарантирует обнаружение восходящего потока дыма.

Рис. 5. Распространение дыма в помещении

Балки продольные и поперечные

Возвращаются европейские требования по размещению точечных извещателей при наличии линейных балок, а так же продольных и поперечных балок (п. 6.6.38) в отредактированном виде (Таблицы 3, 4) по сравнению с версией СП 5.13130 2009 года. Больше не нужно будет устанавливать извещатели в каждый отсек потолка шириной 0,75 м и более.

Рис. 15. Продольные и поперечные балки

В соответствии с распространением дыма при наличии препятствий на перекрытии, если ширина ячейки, образованной балками, равна или меньше четырех высот балки, то извещатели должны быть установлены на нижних плоскостях балок, если больше четырех высот балки, то на потолке (рис. 15).

Таблица 3. Расстояния между извещателями поперек балок

 
Где, Н — высота потолка; W — ширина ячейки; D — высота балки
Перекрытия с продольными и поперечными балками

Таблица 4. Расстояния при наличии продольных и поперечных балок
Где, Н — высота потолка; W — ширина ячейки; D — высота балки

Расстояние до строительных конструкций и светильников

Аналогично BS 5839-1 в п. 6.6.36 сформулировано требование: «Минимальное расстояние от ИП до выступающих на 0,25 м и менее от перекрытия строительных конструкций или инженерного оборудования должно составлять не менее двух высот этих строительных конструкций или оборудования. Расстояние от ИП до стен (перегородок), а также других строительных конструкций и до инженерного оборудования, выступающего от перекрытия на расстояние более 0,25 м, должно быть не менее 0,50 м» (рис. 14). Таким образом расстояние до не выступающих светильников не регламентируется.

Рис. 14. Расстояние извещателя до балки

В п. 6.6.37 указано, что расстояние между извещателем и объектом, препятствующим распространению дымовых и тепловых потоков в помещении (балки, выступы, оборудование инженерных систем, выступающие светильники, вентиляционные отверстия и т.п.) следует измерять по кратчайшему пути от центра извещателя до ближайшей точки объекта.

Устройство

  • Втягивание воздуха;
  • Воздухозаборное отверстие;
  • Система труб;
  • Аспирационный дымовой извещатель.

Устройство состоит из системы труб различного материала и количества. Трубы оборудованы отверстиями для забора воздуха по всей длине. Аспирационная турбина обеспечивает необходимую тягу и прогоняет поток воздуха через дымовые пожарные извещатели. В качестве чувствительного сенсора, контролирующего оптическую плотность поступающего потока, может использоваться светодиодный или лазерный детектор. От того какой тип извещателя применяется, зависит чувствительность устройства, иногда превышающая возможности точечного, пассивного дымового извещателя в сотни раз.

Устройство чувствительного сенсора

  • Лазерный диод;
  • Луч лазера;
  • Оптический усилитель;
  • Приемный фотодиод.

Такой состав и компоновка значительно уменьшают количество ложных срабатываний.

Натурные огневые испытания

Для проверки эффективности аспирационных извещателей и демонстрации особенностей распространения дыма в условиях высокостеллажного складирования были проведены натурные огневые испытания.

Испытательный стенд представлял собой металлический стеллаж высотой 10 м, смонтированный в помещении высотой 13,5 м. Полки конструкции не отделены друг от друга горизонтальными металлическими листами (экранами). В качестве пожарной нагрузки используются пустые деревянные ящики и картонные коробки.

Целями эксперимента были определение оптимального места расположения воздухозаборных отверстий аспирационного извещателя и его оптимальной чувствительности.

В качестве тестового очага пожара было выбрано горение легковоспламеняющейся жидкости без выделения дыма. Трубы аспирационного извещателя размещены на потолке (высота 13,5 м), по верхнему краю стеллажей (10,0 м) и в середине стеллажей (5,0 м). Извещатели имели два уровня чувствительности. Количество воздухозаборных отверстий – по 4 в каждом направлении.

Итоги проведения эксперимента сведены в таблицу 2.

Таблица 2. Ход эксперимента
Начало эксперимента Установка емкости с горящей жидкостью под нижний ярус стеллажа (горение жидкости бездымное)
60 с Начало горения древесины (выделение дыма)
75 с Извещатель на потолке: – чувствительность 1–20 % от порога тревоги; – чувствительность 2–10 % от порога тревоги; извещатели внутри стеллажа и на стеллаже – покой. Визуально дыма не видно
90 с Извещатель на потолке: – чувствительность 1–100 % от порога тревоги; – чувствительность 2–80 % от порога тревоги; извещатели внутри стеллажа и на стеллаже – покой. Визуально дыма не видно
105 с Извещатели на потолке – 100 % от порога тревоги; извещатель внутри стеллажа – 66 % от порога тревоги. извещатель на стеллаже – не срабатывает. Визуально дыма не видно
2 мин. Все извещатели сформировали сигнал «Пожар» (100 % от порога тревоги).Визуально дыма не видно
В части детекции дыма эксперимент закончен.
3 мин. Визуально дыма не видно
4 мин. Визуально дыма не видно
5 мин. Дым виден слабо
6 мин. Дым виден отчетливо. Огонь перешел на второй ярус
7 мин. Огонь перешел на третий ярус
8 мин. Начало тушения водой
9 мин. Тушение. Завершение эксперимента

Анализ результатов и выводы: Дым распространяется между стеллажами, а не сквозь них. Поэтому извещатели на потолке более эффективны.

Разница во времени срабатывания между извещателями высокой и сверхвысокой чувствительности незначительная. Это связано с тем, что дым попадает сразу в несколько отверстий (так называемый «кумулятивный эффект»). Таким образом, высокая чувствительность детекторного модуля нужна только для того, чтобы сделать много воздухозаборных отверстий (чувствительность детекторного модуля уменьшается пропорционально количеству отверстий).

С момента появления открытого пламени (воспламенение деревянных ящиков, 60-я секунда) до формирования сигнала «пожар» извещателем на потолке (90-я секунда) прошло 30 секунд!

С момента появления открытого пламени (воспламенение деревянных ящиков, 60-я секунда)до перехода огня на третий ярус (очаг, который нельзя потушить ручным огнетушителем) прошло 6 минут!

Так как в подавляющем большинстве случаев фаза открытого горения предваряется гораздо более длительной фазой тления, правильно установленный аспирационный извещатель дает десятки минут, а часто – часы, для принятия ответных мер.

Двойной контроль площади ИПДА

Для обеспечения двойного контроля аспирационными дымовыми извещателями в простейшем случае используется расстановка труб через одну с распределением воздухозаборных отверстий по двум решеткам 9 х 9 м. Причем первая труба также располагается на расстоянии 0,5 м от стены, расстояние между первыми двумя трубами – 4 м, между остальными – по 4,5 м (рис. 10).

Рис. 10. ИПДА с двойным контролем защищаемой площади

При увеличении числа воздухозаборных отверстий в два раза расстояния между трубами могут быть увеличены до 6 м (рис. 11).

Рис. 11. ИПДА с увеличенным числом отверстий

Естественно, данные варианты допускаются при расположении труб ИПДА на расстоянии от перекрытия до 900 мм. Это ограничение особых проблем не создает, поскольку при расположении труб на большем расстоянии можно использовать капилляры или ответвления труб для забора проб воздуха на требуемой высоте. Проблемы при проектировании ИПДА возникают при большом числе отверстий и при большой длине труб. Защита высотных складов высотой 40 м требует длину трубы порядка 38,5 м, только чтобы дойти до потолка. Как правило, в рекламных материалах производители ИПДА приводят максимальные длины труб для класса С со временем транспортировки 120 с, а для ИПДА класса А время транспортировки должно быть в два раза меньше – 60 с, и длины труб значительно сокращаются.

Кроме того, в большинстве ИПДА используются центробежные вентиляторы, что определяет снижение величины разрежения при увеличении воздушного потока, то есть при увеличении числа воздухозаборных отверстий. Например, если при минимальном уровне воздушного потока 13 л/мин разрежение составляет 400 Па, то при увеличении воздушного потока до 46 л/мин оно снижается до 375 Па, а при воздушном потоке 130 л/мин падает до 280 Па. Дополнительные ухудшения аэродинамических характеристик ИПДА с центробежными вентиляторами вызывают резкие изменения направлений воздушного потока и величины сечения воздушного канала при прохождении через дымовой сенсор. Лучшие характеристики имеет ИПДА с осевым вентилятором и прямым воздушным каналом с плавным изменением сечения, у которого величина разрежения превышает 1000 Па и практически не снижается при увеличении воздушного потока примерно до 180 л/мин.

Аэродинамический расчет показывает, что при высоте помещения 40 м, исходя из времени транспортировки по классу А 60 с, для одной трубы без разветвлений с воздухозаборными отверстиями через 4,5 м при разрежении 375 Па максимальная длина трубы равна 81,25 м: 38,5 м – вертикальный участок и 42,75 м – горизонтальный участок с 10 воздухозаборными отверстиями при суммарном воздушном потоке 46,1 л/мин. При использовании ИПДА с осевым вентилятором с величиной разрежения 1050 Па длина горизонтального участка увеличивается до 69,75 м (общая длина трубы – 108,25 м) с 16 воздухозаборными отверстиями при суммарном воздушном потоке 80 л/мин.

Таким образом, введение в действие требований СП 484.1311500.2020 в общем случае расширяет область применения аспирационных дымовых извещателей и сужает область применения линейных дымовых извещателей.

Аспирационные дымовые извещатели

Радиус зоны контроля воздухозаборного отверстия равен 6,37 м независимо от класса аспирационного извещателя и от высоты контролируемого помещения (п. 6.6.23)

На незначительное расхождение с величиной радиуса точечного извещателя можно не обращать внимание поскольку в пункте 5.22 сказано: «Численные значения, регламентируемые в настоящем своде правил, могут быть увеличены, но не более чем на 5%». 

Таким образом, максимальный радиус зоны контроля может быть увеличен до 6,688 м максимум. Отверстия в трубах аспирационного извещателя можно располагать по квадратной или по треугольной решетке (рис. 2, 3). Кроме того, при увеличении числа отверстий в трубах можно значительно увеличить расстояния между трубами. Например, если отверстия расположить через 4,5 м, то при радиусе зоны контроля 6,4 м, расстояние между трубами можно увеличить до 12 м, расстояние от стены – до 6 м (рис. 6).

Рис. 6. Расстановка труб и отверстий аспирационного извещателя

В п. 6.6.23 для аспирационных извещателей класса А максимальная высота защищаемого помещения определена равной 30 м, для класса В – 18 м, для класса С – 12 м, т.е. такая же максимальная высота помещения, как для точечных дымовых извещателей, что логично при равной чувствительности. Для сравнения в СП5.13130.2009 для аспирационных извещателей класса А максимальная высота равна 21 м, для класса В – 15 м, для класса С – 8 м. 

Кроме того, в п. 6.6.23 определена возможность защиты аспирационными извещателями высокостеллажных складов высотой до 40 м, в два уровня: на высоте не более 30 м (под ярусами стеллажей) извещателями не ниже класса B и под перекрытием извещателями класса А. Так же расширен диапазон расстояний от перекрытия до воздухозаборных отверстий: минимальное расстояние не регламентируется, что позволяет использовать капиллярные комплекты с плоской насадкой, а максимальное расстояние равно 0,9 м, т.е. в 1,5 раза больше по сравнению с дымовыми линейными извещателями. Таким образом, значительно расширяется область применения аспирационных дымовых извещателей по сравнению с дымовыми линейными извещателями.

В п. 6.6.32 определены области размещения воздухозаборных отверстий аспирационных извещателей в ЦОД, правда с необходимостью выполнения на уровне «разрешается»: на решетках входа горячего воздуха в системы прецизионного кондиционирования (рис. 7), в местах выхода горячего воздуха из активного оборудования (рис. 8), под перекрытиями изолированных «горячих» коридоров, в местах входа горячего воздуха в установки межстоечного кондиционирования (рис. 9, 10), на воздухозаборных решетках систем вытяжной вентиляции из расчета одно отверстие на 0,4 м2, то есть так же, как это определено в NFPA 76 . 

Расстояние от воздухозаборных отверстий до воздухозабора (вентиляционного отверстия) должно регламентироваться величиной допустимой скорости воздушного потока в соответствии с техническими характеристиками аспирационного дымового извещателя. Кроме того, если блок аспирационного дымового извещателя устанавливается вне защищаемого помещения, то рекомендуется предусмотреть возврат проб воздуха в защищаемое помещение (п. 6.6.24).

Рис. 7. Контроль на входах горячего воздуха в системы прецизионного кондиционирования

Рис. 8. Контроль на выходе горячего воздуха из активного оборудования

Сравнительно недавно появились прецизионные кондиционеры, которые встраиваются в ряд стоек, они обеспечивают забор воздуха из горячего коридора по всей его высоте одновременно, например, на рис. 9 прецизионные кондиционеры отмечены красным фоном. 

При таких условиях, в отличии от традиционных горячих коридоров, образуются не вертикальные, а горизонтальные воздушные потоки и контроль воздушной среды в верхней части горячего коридора становится неэффективным. Чтобы обеспечить возможность обнаружения задымления на выходе любого блока в стойке, перед входами горячего воздуха в межстоечные кондиционеры располагаются трубы с большим числом отверстий, по 8 — 10 отверстий на каждую трубу (рис. 10). 

Для исключения влияния воздушных потоков в горячем коридоре, воздушный поток через каждое отверстие повышается в 2 раза по сравнению с обычным помещением, примерно до 4 л/мин. При этом суммарный воздушный поток ИПДА при 40 отверстиях возрастает до значительной величины, порядка 160 — 170 л/мин. Чтобы исключить перепад давления на входе и на выходе аспирационного извещателя, установленного вне горячего коридора, необходимо выходной воздушный поток вывести обратно в горячий коридор.

Рис. 9. Межстоечные кондиционеры выделены красным цветом


Рис. 10. ИПДА с трубами на входах межстоечных кондиционеров

Таблица выбора и реализации алгоритмов

Здесь собрано всё вышесказанное в табличном виде. Проверьте свой объект по положениям СП 484.1311500.2020, чтобы определить алгоритм и минимальное количество извещателей.

Алгоритм А Алгоритм В Алгоритм С
Формирование сигнала управления(пожаротушения, оповещения, дымоудаления и т.п.) Зона контроля ПС должна территориально полностьюнаходиться в данной зоне или совпадать с данной зоной:— 1 зоне контроля ПС соответствует только одна зона управления;— 1 зона управления соответствует 1 или группе зон контроля ПС.
Для каких зданийАлгоритм определяется проектной организацией исходя из условия формирования сигнала управления для СОУЭ и АПТ см. тип СОУЭ дляконкретногоздания
Формирование сигналана СОУЭ 1-3 типа да да нет(но при желании можно)
Формирование сигналана СОУЭ 4-5 типа нет(исключение: есливсе ПИ = ИПР) нет да
Формирование сигналана АУПТ нет(исключение: есливсе ПИ = ИПР) нет да
Формирование сигналаАДУ и т.д. да да да
Кол-во ПИ в помещении Каждая точка помещения (площадь, вписанная в зону контроля ПИ) контролируется не менее чем:
Адресный ПИ 1(если защищаетвсе помещение) 1(если защищаетвсе помещение) 2
Безадресный ПИ 2 2 2
Применение дублирующих ПИ по усмотрению собственника или проектировщика для повышения надежности да да да
Кол-во ПИ подключаемых к одному ППК Не более 512 ПИ / 12 000 кв.м.(Более 512 ПИ / 48 000 кв.м. при условии, что при аварии отказ не более 512 ПИ)
Запас по емкости ППКП и ППУ 20%, если планировка и вид отделки определен100%, если не определена окончательная планировка помещений100%, если возможно дополнительное оборудование помещений фальшполами и подвесными потолками

Классификация по типу датчиков

Классификация противопожарных систем не оканчивается лишь на видах сигнализаций. Рассмотрим основные виды датчиков, разберем их положительные и отрицательные стороны.

Дымочувствительные

Данные датчики заслужили звание самых распространенных в мире. Разберемся почему:

  1. Цена. Стоят дешевле конкурентов и в то же время хорошо справляются с поставленными задачами.
  2. Надежность. Подобные системы отличаются продолжительным временем использования. Из-за простоты конструкции не выходят в отставку без очевидных причин.

Важно учесть, что датчик, реагирующий на горение дерева, никогда не отреагирует на горение бензина или газа.

Поэтому целесообразнее заранее предусмотреть возможные варианты его эксплуатации.

Из минусов можно отметить высокую чувствительность к дыму. Курить, готовить что-либо в духовой печи или пользоваться плитой рядом с датчиком у вас не получиться.

Теплочувствительные (термальные)

Такие приборы работают по неизмеримому количеству видов технологий, ознакомимся с наиболее распространенными их представителями:

  • Изменение электрического сопротивления термоэлемента вследствие его нагрева.
  • Возникновение разницы потенциалов на концах двух разных металлов, место соединения которых нагревается.
  • Тепловое расширение термочувствительных элементов.
  • Объемное расширение жидкости или газа.
  • Изменение электромагнитного поля в зависимости от температуры окружающей среды.
  • Использование одноразовых вставок, сгорающих или плавящихся при воздействии высокой температуры.
  • Изменение упругости рабочего тела при его нагреве.

При выборе также необходимо учитывать необходимую в конкретном случае модификацию.

Минус – частота ложных срабатываний, невозможность установки некоторых конфигураций вблизи нагревательных приборов.

Датчик обнаружения пламени

Систему подобной категории можно назвать весьма надежной, поскольку она имеет возможность зафиксировать возгорание еще на ранней стадии. Работают такие датчики по принципу обнаружения пламени с помощью ультрафиолетового или магнитного мерцания.

В этом процессе задействованы чувствительные сенсоры (фоторезисторы и фотодиоды), способные воспринимать мерцания на частоте 2-20 Герц.

Из-за особенностей таких сенсоров, датчики не срабатывают на солнечный свет, снегопад, пыль, дождь и так далее.

Такие системы не являются компактными, поскольку обязаны соответствовать международному стандарту защиты от внешней среды, начиная от стандарта IP-65 и выше. Так, что встречаются они преимущественно в металлическом корпусе. Размещать их рекомендуется парно так, как это сводит вероятность ложного срабатывания практически к нулю. Устанавливают их преимущественно на крупных объектах.

Принцип действия

Пожарный аспирационный извещатель — автоматический пожарный извещатель, обеспечивающий отбор через систему труб с воздухозаборными отверстиями и доставку проб воздуха (аспирацию) из защищаемого помещения (зоны) к устройству обнаружения признака пожара (дыма, изменения химического состава среды).

Вас также может заинтересовать информация: “Стационарные системы пожаротушения“

От теплового, дымового к аспирационному

Не надо забывать, что это не единственные виды устройств обнаружения пожара. Извещатели пламени, газа, линейные, точечные, адресные, автономные дымовые извещатели, термочувствительные кабели, даже пиротехнические импульсные устройства – много изобретено того, что можно грамотно установить в защищаемых помещениях, различных по своему назначению, пожарной загрузке, другим параметрам эксплуатации для эффективной работы в составе АПС, АУПТ.

Про все виды извещателей читайте тут: Извещатели пожарные

Последние годы различные иностранные производители и, соответственно, их российские представительства широко и часто рекламируют аспирационные пожарные извещатели, уверяя что за ними блестящее, ничем незамутненное будущее, а как пример высоких технических, эксплуатационных качеств приводят цифру в 7% – это ниша их использования на рынке пожарных детекторов Европы. Даже если это не так, стоит разобраться с преимуществами аспирационного дымового пожарного извещателя, заявленного как вершина развития таких устройств на сегодня.

Для сведения: аспирация – это принудительный отбор загрязненной воздушной среды, газов, выбросов пыли от технологического оборудования, из производственных помещений за счет использования вентилятора/насоса, создающего разряжение в приемных трубопроводах. Является разновидностью промышленной вентиляции.

Это интересно: Ионизационные пожарные извещатели: виды и принцип действия

Устройство и установка

Аспирационный дымовой извещатель состоит из:

  • механизма втягивания;
  • нескольких трубок;
  • отверстия для сбора пробы;
  • самого оповещателя.

В роли чувствительного сенсора выступает детектор. Для эффективности сканирования в него встраивается оптический усилитель. Благодаря этому уменьшается количество ложных сигналов на пульт пожарной охраны.

Установка противопожарной сигнализации производится согласно требованиям СП. Детекторы типа «А» предписаны к размещению в комнатах с высотой потолков до 21 м, «В» — до 15 м, «С» — до 8 м.

Обратите внимание! Датчики можно устанавливать не только на потолке. Их можно размещать на металлических конструкциях, под обшивкой или отделкой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector