Ардуино термометр на основе датчика температуры ds18b20

Proteus

Программа поддерживает два модуля:

  1. ISIS – для создания и имитации работы электронной схемы;
  2. ARES – для удобного размещения компонентов на плате, выбирая из широкого списка возможных компонентов во встроенной библиотеке.

Программа имеет в себе до шести тысяч эл. компонентов со всеми необходимыми справками на них и рекомендациями. Ресурсы программы позволяет визуализировать созданную плату и опробовать ее в работе в виртуальной среде. Там же найдя все уязвимости и неполадки, не перенося их на чистовую плату.

В этой программе создали уже не одну тысячу, а может и миллион программ, схем, плат. По ней обучаются студенты мировых инженерных вузов. Она максимально проста и эффективна.

В своей библиотеке она имеет, и ds18s20 с помощью которого создать ваше будущее творение становиться, возможно.

Рекомендуем купить

Примеры работы для Arduino

Один датчик

Рассмотрим простой пример — подключения одного датчика.

Сенсор подключается к управляющей плате через один сигнальный пин.
При подключении к Arduino в компактном формфакторе, например Arduino Micro или Iskra Nano Pro, воспользуйтесь макетной платой и парочкой нажимных клеммников.

Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.

При коммуникации сенсора со стандартными платами Arduino формата Rev3, Arduino Uno или Iskra Neo, используйте Troyka Slot Shield совместно с модулем подтяжки.

Код программы

Выведем температуру сенсора в Serial-порт.

simple.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
 
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensor(&oneWire);
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // начинаем работу с датчиком
  sensor.begin();
  // устанавливаем разрешение датчика от 9 до 12 бит
  sensor.setResolution(12);
}
 
void loop(){
  // переменная для хранения температуры
  float temperature;
  // отправляем запрос на измерение температуры
  sensor.requestTemperatures();
  // считываем данные из регистра датчика
  temperature = sensor.getTempCByIndex();
  // выводим температуру в Serial-порт
  Serial.print("Temp C: ");
  Serial.println(temperature);
  // ждём одну секунду
  delay(1000);
}

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.

Код программы

Просканируем все устройства на шине и выведем температуру каждого сенсора отдельно в Serial-порт.

multipleSensors.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensors(&oneWire);
// создаём указатель массив для хранения адресов датчиков
DeviceAddress *sensorsUnique;
// количество датчиков на шине
int countSensors;
 
// функция вывода адреса датчика
void printAddress(DeviceAddress deviceAddress){
  for (uint8_t i = ; i < 8; i++){
    if (deviceAddressi < 16) Serial.print("0");
    Serial.print(deviceAddressi, HEX);
  }
}
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // ожидаем открытия Serial-порта
  while(!Serial);
  // начинаем работу с датчиком
  sensors.begin();
  // выполняем поиск устройств на шине
  countSensors = sensors.getDeviceCount();
  Serial.print("Found sensors: ");
  Serial.println(countSensors);
  // выделяем память в динамическом массиве под количество обнаруженных сенсоров
  sensorsUnique = new DeviceAddresscountSensors;
 
  // определяем в каком режиме питания подключены сенсоры
  if (sensors.isParasitePowerMode()) {
    Serial.println("Mode power is Parasite");
  } else {
    Serial.println("Mode power is Normal");
  }
 
  // делаем запрос на получение адресов датчиков
  for (int i = ; i < countSensors; i++) {
    sensors.getAddress(sensorsUniquei, i);
  }
  // выводим полученные адреса
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Address: ");
    printAddress(sensorsUniquei);
    Serial.println();
  }
  Serial.println();
  // устанавливаем разрешение всех датчиков в 12 бит
  for (int i = ; i < countSensors; i++) {
    sensors.setResolution(sensorsUniquei, 12);
  }
}
 
void loop(){
  // переменная для хранения температуры
  float temperature10;
  // отправляем запрос на измерение температуры всех сенсоров
  sensors.requestTemperatures();
  // считываем данные из регистра каждого датчика по очереди
  for (int i = ; i < countSensors; i++) {
    temperaturei = sensors.getTempCByIndex(i);
  }
  // выводим температуру в Serial-порт по каждому датчику
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Temp C: ");
    Serial.print(temperaturei);
    Serial.println();
  }
  Serial.println();
  // ждём одну секунду
  delay(1000);
}

Datasheets

Datasheet

PDF, 487 Кб

Выписка из документа

DS18S20 High-Precision 1-Wire Digital Thermometer General Description The DS18S20 digital thermometer provides 9-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18S20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of ­55°C to +125°C and is accurate to ±0.5°C over the range of ­10°C to +85°C. In addition, the DS18S20 can derive power directly from the data line («parasite power»), eliminating the need for an external power supply. Each DS18S20 has a unique 64-bit serial code, which allows multiple DS18S20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18S20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring and control systems. Benefits and Features Unique 1-Wire Interface Requires Only One Port Pin for Communication Maximize System Accuracy in Broad Range of Thermal Management Applications Measures Temperatures from -55°C to +125°C (-67°F to +257°F) ±0.5°C Accuracy from -10°C to +85°C 9-Bit Resolution No External Components Required Parasite Power Mode Requires Only 2 Pins for Operation (DQ and GND) Simplifies Distributed Temperature-Sensing Applications with Multidrop Capability Each Device Has a Unique 64-Bit Serial Code Stored in On-Board ROM Flexible User-Definable Nonvolatile (NV) Alarm Settings with Alarm Search Command Identifies Devices with Temperatures Outside Programmed Limits Available in 8-Pin SO (150 mils) and 3-Pin TO-92 Packages Applications Thermostatic Controls Industrial Systems Consumer Products Thermometers Thermally Sensitive Systems Pin ConfigurationsTOP VIEW DS18S201 2 3 N.C. N.C. VDD GND 1 2 3 4 + DS18S20 8 7 6 5 N.C. N.C. N.C. GND SO (150 mils) (DS18S20Z) GND DQ VDD 2 3 1 Ordering Information appears at end of data sheet. 1-Wire is a registered trademark of Maxim Integrated Products, Inc. BOTTOM VIEW 1 TO-92 (DS18S20) 19-5474; Rev 2; 1/15 DS18S20 High-Precision 1-Wire Digital Thermometer Absolute Maximum RatingsVoltage Range on Any Pin Relative to Ground .-0.5V to +6.0V Continuous Power Dissipation (TA = +70°C) 8-Pin SO (derate 5.9mW/°C above +70°C).470.6mW 3-Pin TO-92 (derate 6.3mW/°C above +70°C) .500mW Operating Temperature Range . -55°C to +125°C Storage Temperature Range . -55°C to +125°C Lead …

Описание датчика DS18B20 для Arduino

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Микросхема имеет три выхода, из которых для данных используется только один, два остальных – это земля и питание. Число проводов можно сократить до двух, если использовать схему с паразитным питанием и соединить Vdd с землей. К одному проводу с данными можно подключить сразу несколько датчиков DS18B20 и в плате Ардуино будет задействован всего один пин.

Где купить датчик

Влагозащищенный датчик температуры DS18B20 с длиной провода 1 м от надежного магазина Комплект из 10 микросхем DS18B20 TO92 Модуль DS18B20 для удобного подключения к Ардуино от Keyestudio
Беспроводной модуль DS18B20 на ESP8266 ESP-01 ESP-01S для проектов умного дома Шилд датчика DS18B20 для платы D1 MINI – беспроводная передача данных Датчик DS18B20 с модулем для подключения к Ардуино

Особенности цифрового датчика DS18B20

Погрешность измерения не больше 0,5 С (для температур от -10С до +85С), что позволяет точно определить значение температуры. Не требуется дополнительная калибровка.
Температурный диапазон измерений лежит в пределах от -55 С до +125 С.
Датчик питается напряжением от 3,3В до 5В.
Можно программно задать максимальную разрешающую способность до 0,0625С, наибольшее разрешение 12 бит.
Присутствует функция тревожного сигнала.
Каждое устройство обладает своим уникальным серийным кодом.
Не требуются дополнительные внешние элементы.
Можно подключить сразу до 127 датчиков к одной линии связи.
Информация передается по протоколу 1-Wire.
Для присоединения к микроконтроллеру нужны только 3 провода.
Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода

Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Во время включения питания датчик находится в состоянии покоя. Для начала измерения контроллер Ардуино выполняет команду «преобразование температуры». Полученный результат сохранится в 2 байтах регистра температуры, после чего датчик вернется в первоначальное состояние покоя. Если схема подключена в режиме внешнего питания, микроконтроллер регулирует состояние конвертации. Во время выполнения команды линия находится в низком состоянии, после окончания программы линия переходит в высокое состояние. Такой метод не допустим при питании от паразитной емкости, так как на шине постоянно должен сохраняться высокий уровень сигнала.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Как работают современные датчики температуры

Блок-схема датчика температуры типа DS18B20 выглядит следующим образом:

Исходя из вышеприведенной структуры, рассматриваемый датчик состоит из:

  • регистра конфигурации, программируемого пользователем (9–12 разрядов);
  • датчика температуры;
  • верхнего Th и нижнего Tl порога срабатывания сигнала тревоги;
  • 64-битной памяти типа ROM и блока обработки протокола 1-Wire;
  • внутреннего источника питания, способного работать как от внешнего источника, так и от «паразитных» импульсов.

Принцип работы

Основная функция микросхемы DS18B20 — трансформация показаний встроенного датчика температуры в цифровой код. Это преобразование зависит от разрешения преобразования, установленного пользователем, которое варьируется от 9 до 12 бит (0,5°–0,625°С). Если настройки не производились, то установка регистра конфигурации соответствует 12 битам.

В начальном состоянии DS18B20 находится в состоянии покоя или иными словами в низком энергетическом уровне. Для начала измерений микроконтроллер подает сигнал , после чего полученные данные сохраняются в регистр, а сам датчик переходит в режим «покоя».

При работе цифрового датчика температуры DS18B20 от независимого источника питания микроконтроллер способен контролировать процесс выполнения команды , которая осуществляет измерение температуры. Таким образом, датчик температуры DS18B20 сформирует логический «0» во время трансформации показаний температурного режима и логическую «1» в случае окончания процесса преобразования.

Если питание микросхемы осуществляется при помощи «паразитного метода», то контроль логических «0» и «1» невозможен, поскольку на шине будет постоянно дежурить высокий уровень напряжения питания.

После снятия и обработки сигнала с датчика температуры в микросхеме DS18B20 полученные данные в градусах Цельсия сохраняются в виде 16-битного числа с признаком (S), который отвечает за знак «+» или «-» температуры. Структура регистра температуры будет выглядеть так, как показано ниже.

Если показания температуры выше «0», то показатель S=0, если же значение температуры отрицательное, то S=1. Ниже представлена таблица соответствия данных и температуры.

1-Wire. Работа с DS18B20. Часть 1

     Все (и в том числе я) называют DS18B20 цифровым датчиком температуры. Однако это не просто датчик, это программируемый цифровой термометр.

Он измеряет температуру в диапазоне от –55 до +125 градусов Цельсия, имеет программируемое температурное разрешение от 9 до 12 бит и позволяет задавать верхний и нижний температурные пороги, в случае превышения которых,  устанавливается флаг аварии.

   Каждый термометр DS18B20 имеет уникальный 64 битный серийный номер, который используется для его адресации на 1-Wire шине. Это позволяет объединять на одной шине несколько независимо работающих термометров и осуществлять между ними и микроконтроллером обмен данными по 1-Wire протоколу. 

   Также особенностью данного термометра является то, что его можно запитывать не только от источника питания, но и от сигнального провода. Это так называемый режим паразитного питания. В этом режиме для подключения DS18B20 требуется всего два провода — сигнальный и возвратный (земляной, GND).

      Схема подключения нескольких датчиков DS18B20 с внешним питанием.    1-Wire шина  должна быть обязательно подтянута к плюсу питания через резистор номиналом 4,7 Ком. Напряжение источника питания от 3 до 5 Вольт. 

   Схема подключения датчика DS18B20 в режиме паразитного питания. 

   Вывод Vdd соединяется с GND, а 1-Wire шина дополнительно подключается к источнику питания через полевой транзистор. 

   Когда датчик DS18B20 выполняет преобразование температуры или копирует данные из ОЗУ в EEPROM память, он потребляет ток до 1,5 мА. Этот ток может вызывать недопустимое снижение напряжения на 1-Wire шине. Чтобы этого не происходило, 1-Wire шину на время выполнения этих операций подключают к источнику питания. Для этого и нужен полевой транзистор.   

     Для обмена данными термометр DS18B20 использует 1-Wire протокол (однопроводный протокол).

Это низкоскоростной двунаправленный полудуплексный последовательный протокол обмена данными использующий всего один сигнальный провод.

   Имеется несколько типов сигналов, определенных 1-Wire протоколом – импульс сброса, импульс присутствия, запись 0, запись 1, чтение 0 и чтение 1. Все эти сигналы, за исключением импульса присутствия, формируются на шине главным устройством — MASTERом . В нашем случае это  микроконтроллер AVR. 

  Принцип формирования сигналов во всех случаях одинаковый. В начальном состоянии 1-Wire шина с помощью резистора подтянута к плюсу питания. Главное устройство «проваливает» на определенное время 1-Wire шину в ноль, затем «отпускает» ее и, если нужно, «слушает» ответ подчиненного (SLAVE) устройства. В нашем случае подчиненное устройство – термометр DS18B20. 

  Физически это реализуется так. 

  Операция записи бита: Вывод микроконтроллера устанавливается в режим выхода и на нем устанавливается логический ноль. Выдерживается пауза, длительность которой зависит от значения передаваемого бита (0 или 1), затем вывод переводится в режим входа в состоянии Hi-z и снова выдерживается пауза. 

   Все сеансы связи микроконтроллера с датчиком DS18B20 начинаются с сигнала сброса.  Микроконтроллер на 480 мкс «проваливает» 1-Wire шину в ноль, а затем «отпускает» ее. Если к шине подключен термометр DS18B20, то он  обнаруживает положительный перепад и после паузы в 15-60 мкс отвечает микроконтроллеру импульсом присутствия — «проваливает» шину в ноль на время от 60 до 240 мкс. 

   Обмен данными по 1-Wire шине происходит последовательно, младшим битом вперед. Передача или прием одного бита данных выполняются в течении фиксированного промежутка времени, так называемого тайм слота (time slot). Различают тайм слоты записи и тайм слоты чтения. Длительность всех тайм слотов должна быть > 60 мкс, а пауза между тайм слотами  > 1 мкс.   

   Для передачи нуля микроконтроллер «проваливает» 1-Wire шину на время от 60 до 120 мкс. Затем «отпускает» ее и перед записью следующего бита выдерживает паузу >1  мкс.

   DS18B20 является подчиненным устройством и может передавать данные, только когда микроконтроллер формирует на 1-Wire шине тайм слоты чтения.

Для формирования тайм слота чтения микроконтроллер «проваливает» 1-Wire шину на время от 1 до 15 мкс, а затем «отпускает» ее, передавая  управление состоянием 1-Wire шины датчику DS18B20.

Если DS18B20 передает ноль, он удерживает шину в «проваленном» состоянии (в состоянии логического нуля) до конца тайм слота. Если он передает 1, он оставляет шину в «подтянутом» состоянии. 

   Микроконтроллер может считывать данные датчика DS18B20 через 15 мкс после начала тайм слота чтения. 

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Фото — датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

  1. Чтобы добраться к датчику, Вам нужно снять воздуховод, который охлаждает корпус воздушного фильтра и присоединяется к радиатору при помощи двух болтовых соединений и шланга подачи воздуха. Открутите болты и снимите хомут, аккуратно достаньте всю систему. Отключите от датчика электрические провода, чтобы корректно провести замеры сопротивления. Установите мультиметр на режим омметра и задайте значение в 1000 Ом. Подключите контакты устройства к положительному и отрицательному контактам. Нормальное сопротивление должно быть в пределах 2700 Ом при выключенном моторе. Для проверки датчика при включенном движке, нужно убрать тестер подальше от вращающихся частей авто;

    Фото — проверка датчика мультиметром

  2. Убедившись, что датчику температуры необходим ремонт, нужно отсоединить его от двигателя. Чтобы продолжить снятие, Вы должны предварительно слить антифризную жидкость из радиатора при помощи сливного клапана. После проверить еще раз радиатор и контакты датчика и открутить регулирующий болт как на фото;

    Фото — снятие датчика

  3. Сборка производится в обратной форме. Нужно помнить, что практически основная характеристика датчика температуры охлаждающей жидкости – это материал шайбы. Если шайба медная, то резьбу сигнализатора не нужно обрабатывать герметиком, в противном случае обязательно смажьте устройство.

    Фото — медный температурный датчик

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

Проверка датчика температуры является несложной процедурой, с которой может справиться даже начинающий автолюбитель. Датчик температуры охлаждающей жидкости (сокращенно — ДТОЖ) представляет собой термистор, то есть, резистор, изменяющий значение своего внутреннего сопротивления в соответствии с температурой, куда помещен его исполнительный элемент. Чаще всего для этого используют мультиметр (другое название — тестер, «цэшка»), который в состоянии измерять значение электрического сопротивления в цепи.

Общие принципы работы датчика температуры DS18B20

DS18B20 представляет собой однопроводный цифровой датчик температуры от компании Maxim IC. Выдает значение температуры в градусах Цельсия, способен измерять температуру с 9-12 битной точностью в диапазоне от -55 до 125 градусов Цельсия с точностью +/-0.5 градуса. Каждый датчик DS18B20 имеет 64-битный уникальный номер (Serial number), вытравленный на корпусе датчика, что позволяет подключать огромное число подобных датчиков к одной шине данных. С помощью данного датчика можно измерять температуру воздуха, жидкостей и земли. В некоторых магазинах датчик продается в комплекте с резистором сопротивлением 4,7 кОм.

Особенности датчика DS18B20:

  • однопроводный интерфейс (1-Wire interface), что позволяет использовать для подключения датчика только один контакт микроконтроллера (в нашем случае платы Arduino Uno);
  • каждый датчик имеет 64-битный уникальный последовательный код (номер), хранящийся в ПЗУ (ROM) датчика;
  • способность подключения к одной шине множества датчиков позволяет создавать на его основе приложения для распределенного (в пространстве) измерения температуры;
  • не требует никаких внешних компонентов;
  • может быть запитан от линии данных;
  • поддерживает напряжение питания от 3.0V до 5.5V;
  • способен измерять температуру в диапазоне от –55°C до +125°C (–67°F до +257°F) с точностью ±0.5°C (в диапазоне от –10°C до +85°C);
  • можно выбрать разрешающую способность (разрешение) датчика: от 9 до 12 бит;
  • преобразует значение температуры в 12-битное цифровое слово длительностью 750 мс (max.);
  • можно настраивать энергонезависимую (nonvolatile, NV) сигнализацию (сигнал тревоги);
  • опции сигнала тревоги позволяют идентифицировать и определить адрес датчика, чья температура не соответствует запрограммированным границам;
  • может применяться в устройствах термоконтроля, промышленных системах, потребительских продуктах, термометрах и в любых других системах, где требуется измерение температуры.

Более подробную информацию о принципах работы датчика DS18B20 вы можете посмотреть в следующей статье на нашем сайте.

На что они похожи?

На Рисунке 1 приведен пример подлинного датчика DS18B20 производства Maxim в корпусе TO-92.

Рисунок 1. Пример маркировки оригинальных датчиков DS18B20 на корпусе TO-92.

На момент написания статьи (2019) маркировка оригинальных  микросхем Maxim наносилась лазером, а не печаталась.

  • Первые две строки, DALLAS 18B20, указывают, что это датчик DS18B20 (Dallas Semiconductor является первоначальным производителем), датчики только с паразитным питанием маркируются DALLAS 18B20P.
  • Знак «+» в четвертой строке означает, что компонент соответствует требованиям RoHS.
  • 3-я строка указывает год выпуска и номер недели в году (в данном случае это 32 неделя 2019 года).
  • Последние два символа в строке 3 указывают ревизию кристалла (на данный момент С4).
  • В строке 4 трехзначное число, за которым следуют два символа, является формой кода партии, которая позволяет Maxim отследить историю производства.
  • В микросхемах, выпущенных в 2016 году или позже, встречалась только комбинация символов AB и AC .

Маркировка внутри отступа на задней части:

  • Маркировка P (Филиппины?). На всех последних микросхемах (2016 и моложе) и на большинстве микросхем, выпуск которых уходит, как минимум, в 2009 год.
  • Маркировка THAI <буква> (Таиланд?), где <буква> — это одна из I, J, K, L, M, N, O, S, T, U, V, W, X, и, возможно, других, по крайней мере, на некоторых микросхемах произведенных в 2011 году . Шрифт <буквы>  отличается от шрифта символов, составляющих слово THAI.

Из того, что было автором замечено на корпусе TO-92, только для микросхем с маркировкой P в отступе на задней части один код партии соответствует коду даты производства. Это не относится к микросхемам с маркировкой THAI в отступе.

Особенности

  • Для проводного 1wire хватит одного порта связи с контроллером;
  • Каждое устройство имеет свой «серийник» размером 64 разряда;
  • Возможность кооперации нескольких измерителей в одну линию;
  • Не требователен к внешним компонентам;
  • Питается от линии связи;
  • Диапазон рабочих температур от -55 до + 125, при погрешности достигающей до 0.5 градусов Цельсия;

Проводной датчик температуры DS18S20

  • Разрешение преобразование задается управляющим (9…12 бит);
  • Интервал измерения не превышает 750 мс;
  • Гибкая настройка тревожного сигнала;
  • Сигнал передает информацию о датчике, у которого произошел выход за предельно допустимую норму;
  • Широкая область применения.

Обзор измерителя

Оперативная память измерителя хранит:

 Загрузка …

  1. значение измеренного климата (2 б);
  2. пороги срабатывания тревоги;
  3. конфигурация (1 б) – только в версии «датчик ds18b20».

Нельзя не упомянуть, что термодатчики ds18b20 и ds18s20 помимо конфигурации разная система обрабатывания сигнала, в результате которой b20 обладает более длительным таймингом конвертации сигнала, в зависимости от выбранного разрешения. В остальном различий у них нет.

Основная функция аппарата в преобразовании показателей температуры в цифровой код. После преобразования память будет храниться в паре байтов, и ждать своего дальнейшего использования.

Итог

Ds18s20 не предназначен для широкого круга лиц. Маловероятно, что кто-то будет использовать его в домашних условиях. Скорее он является базой для будущего бизнеса или экономной возможностью для уже существующего. Однако для работы с ним требуется понимание многих процессов.

Подготовленный и понимающий человек сможет создать с ее помощью все, что захочет для поддержания климата в доме, измерения температуры на улице, или даже для поддержания работы холодильника. Но обычный несведущий в программировании и создании плат человек, скорее всего, приобретет готовый вариант датчика из предложенных в специализированном магазине.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector