История шифрования. противостояние шифрования и спецслужб

Шифр Цезаря

Итак, после небольшого введения в цикл, я предлагаю все-таки перейти к основной теме сегодняшней статьи, а именно к Шифру Цезаря.

Что это такое?

Шифр Цезаря — это простой тип подстановочного шифра, где каждая буква обычного текста заменяется буквой с фиксированным числом позиций вниз по алфавиту. Принцип его действия можно увидеть в следующей иллюстрации:

Какими особенностями он обладает?

У Шифра Цезаря, как у алгоритма шифрования, я могу выделить две основные особенности. Первая особенность — это простота и доступность метода шифрования, который, возможно поможет вам погрузится в эту тему, вторая особенность — это, собственно говоря, сам метод шифрования.

Программная реализация

В интернете существует огромное множество уроков, связанных с криптографией в питоне, однако, я написал максимально простой и интуитивно понятный код, структуру которого я вам продемонстрирую.

Начнем, пожалуй, с создания алфавита. Для этого вы можете скопировать приведенную ниже строку или написать все руками.

Далее, нам нужно обозначить программе шаг, то есть смещение при шифровании. Так, например, если мы напишем букву «а» в сообщении, тот при шаге «2», программа выведет нам букву «в».

Итак, создаем переменнуюsmeshenie, которая будет вручную задаваться пользователем, и message, куда будет помещаться наше сообщение, и, с помощью метода возводим все символы в нашем сообщении в верхний регистр, чтобы у нас не было ошибок. Потом создаем просто пустую переменную itog, куда мы буем выводить зашифрованное сообщение. Для этого пишем следующее:

Итак, теперь переходим к самому алгоритму шифровки. Первым делом создаем цикл, где мы определим место букв, задействованных в сообщении, в нашем списке alfavit, после чего определяем их новые места (далее я постараюсь насытить код с пояснениями):

Далее, мы создаем внутри нашего цикла условие , в нем мы записываем в список itog мы записываем наше сообщение уже в зашифрованном виде и выводим его:

Модернизация

Вот мы и написали программу, однако она имеет очень большой недостаток: «При использовании последних букв(русских), программа выведет вам английские буквы. Давайте это исправим.

Для начала создадим переменную lang, в которой будем задавать язык нашего шифра, а так же разделим английский и русский алфавиты.

Теперь нам надо создать условие, которое проверит выбранный язык и применит его, то есть обратится к нужному нам алфавиту. Для этого пишем само условие и добавляем алгоритм шифрования, с помощью которого будет выполнено шифрование:

Дешифровка сообщения

Возможно это прозвучит несколько смешно, но мы смогли только зашифровать сообщение, а насчет его дешифровки мы особо не задумывались, но теперь дело дошло и до неё.

По сути, дешифровка — это алгоритм обратный шифровке. Давайте немного переделаем наш код (итоговый вид вы можете увидеть выше).

Для начала, я предлагаю сделать «косметическую» часть нашей переделки. Для этого перемещаемся в самое начало кода:

Остальное можно оставить так же, но если у вас есть желание, то можете поменять названия переменных.

По большому счету, самые ‘большие’ изменения у нас произойдут в той части кода, где у нас находится алгоритм, где нам нужно просто поменять знак «+» на знак «-«. Итак, переходим к самому циклу:

Асимметричное шифрование

Данный тип шифрования принято называть криптографией с открытым ключом, причем используется два ключа, один из которых, используемый для шифрования, носит открытый характер и известен широкой общественности, в то время как второй, используемый для дешифровки, известен лишь пользователю соответствующего ключа и является закрытым. За счет связи ключей при помощи математических вычислений, данные, при шифровании которых применялся открытый ключ, могут быть дешифрованы только соответствующим ключом закрытого типа, за счет чего удается решить проблему симметричного шифрования управления ключами. Однако подобная особенность шифрования с открытым ключом, носящая уникальных характер, приводит к повышению степени уязвимости для атак.

Кроме того, методы асимметричного шифрования, требующие значительных вычислительных мощностей, по сравнению с симметричным шифрованием, практически в тысячу раз медленней. В качестве методов преобразования данных в нечитаемую форму обычно применяются методы, связанные с перестановкой и заменой. Одним из примеров метода подстановки как раз и является шифр Цезаря, который отличается достаточно простым алгоритмом шифрования и дешифрования. Для того, чтобы расшифровать систему, даже не нужно знать ключ шифрования, который достаточно легко взломать при помощи изменения порядка шифрования и изменения порядка алфавита.

В том случае, если достоверно известно, что при кодировке использовался шифр Цезаря, то для того, чтобы выполнить криптоанализ методом грубой силы, потребуется всего лишь перебрать 26 ключей, применительно к английскому языку, учитывая известность шифрования и дешифровки. Кроме того, если стала известна одна буква, то определив смещение можно достаточно оперативно расшифровать все сообщение. Одним из наиболее распространенных методов, используемых в криптоанализе, является «Частотный анализ», предполагающий, что в длинных текстах, причем для разных текстов одного языка, частота появления заданной буквы алфавита – не меняется. Особую известность метод частотного криптоанализа получил в 1822 году, в процессе дешифровки египетских иероглифов. Начиная с середины прошлого века, разработка подавляющей части алгоритмов шифрования осуществляется с учетом устойчивости к частотному криптоанализу, в связи с чем он, как правило, применяется в процессе обучения будущих криптографов.

Шифры

ГОСТ 34.12-2018 охватывает блочные шифры. Именно в этом ГОСТе описаны алгоритмы шифрования Кузнечик и Магма — алгоритмы блочного шифрования с длинами шифруемых блоков 128 бит и 64 бита соответсвенно и длиной ключа шифрования 256 бит у обоих.

Шифрование блока открытого теста Кузнечиком происходит в 10 раундов, для каждого раунда из исходного ключа шифрования генерируется пара раундовых ключей, в каждом раунде проходят стадии подстановки и перестановки (перестановка вызывает особый интерес для криптоанализа алгоритма).

Приведем упрощенную схему работы Кузнечика при зашифровании.

Расшифрование Кузнечиком реализуется путем использования обратных операций подстановки и перестановки в инвертированном порядке, также, в обратном порядке следуют и раундовые ключи.

@sevastyan01 в своей статье подробно описал алгоритм Кузнечик.

Зашифрование блока Магмой проходит в 32 раунда, для каждого раунда из исходного ключа шифрования генерируется раундовый ключ, причем алгоритм генерации ключей отличается от генерации ключей в Кузнечике.

Расшифрование производится аналогичной зашифрованную последовательностью раундов, но с инвертированным порядком следования раундовых ключей.

Немного о проекте

Мне, лично, давно была интересна тема шифрования информации, однако, каждый раз погрузившись в эту тему, я осознавал насколько это сложно и понял, что лучше начать с чего-то более простого. Я, лично, планирую написать некоторое количество статей на эту тему, в которых я покажу вам различные алгоритмы шифрования и их реализацию в Python, продемонстрирую и разберу свой проект, созданный в этом направлении. Итак, начнем.

Для начала, я бы хотел рассказать вам какие уже известные алгоритмы мы рассмотрим, в моих статьях. Список вам представлен ниже:

  • Шифр Цезаря

  • Шифр Виженера

  • Шифр замены

  • Омофонический шифр

  • RSA шифрование

Криптография для всех

В 1949 году Клод Шеннон пишет работу «Теория связи в секретных системах», и криптография окончательно переходит в сферу математики. К концу 1960-х роторные шифровальные системы заменяются более совершенными блочными, которые предполагали обязательное применение цифровых электронных устройств. В 1967 году ученый Дэвид Кан издал популярную книгу «Взломщики кодов», которая вызвала большой интерес к криптографии.  

С распространением компьютеров криптография выходит на новый уровень. Мощности новых устройств позволяют создавать на порядки более сложные шифры. Шифр или код становится языком общения между компьютерами, а криптография становится полноценной гражданской отраслью. В 1978 году разрабатывается стандарт шифрования DES, который стал основой для многих современных криптографических алгоритмов. 

Сфера использования криптографии расширяется, при этом власти различных стран пытаются удержать контроль над использованием шифров. Разработки криптографов засекречиваются, от производителей шифровальных машин требуют оставлять в продуктах «черные ходы» для доступа спецслужб. 

Параллельно независимые криптоаналитики разрабатывают способы шифрования, которыми могли бы пользоваться все желающие – так называемую открытую криптографию. Особенно актуально это стало с развитием интернета, где вопрос конфиденциальности информации встал очень остро. Первой криптосистемой с открытым ключом считается созданный в 1977 году алгоритм RSA, название которого является акронимом имен создателей – Риверста, Шамира и Адельмана. А в 1991 году американский программист Филипп Циммерман разрабатывает популярнейший пакет PGP с открытым исходным кодом для шифрования электронной почты.

Распространение доступного интернета по всему миру невозможно представить без криптографии. С появлением мессенджеров, социальных сетей, онлайн-магазинов и сайтов государственных услуг передача персональной информации в сети происходит без остановки и в огромных количествах. Сегодня мы сталкиваемся с криптографией ежедневно, когда вводим пароль от почтового сервиса, узнаем статус покупки онлайн или делаем денежный перевод через приложение банка. Криптография прошла гигантский путь от простых шифров древности к сложнейшим криптосистемам. Будущее этой науки творится на наших глазах – очередная революция в шифровании произойдет с появлением квантовых суперкомпьютеров, разработка которых уже ведется.

Перестановочные шифры

Вторая группа кодирования информации использует переустановку не символов, а фраз. При этом могут применяться разные алгоритмы и правила в зависимости от алфавита и объёма сообщения.

Более специфические системы кодирования используют подмену отдельных символов в предложении. При работе с кодировкой пользователь сразу может определить количество предложений и прописанных букв в нём.

Простая перестановка

При кодировании человек самостоятельно выбирает принцип перестановки букв или фраз. Это может быть число или направление письма. Для расшифровки потребуется узнать ключ и правило, по которому производилась замена символов в предложении или тексте.

Здесь же может применяться метод транспозиции. Каждое отдельно предложение можно записать зеркально – задом наперёд. В тексте может шифроваться по такому принципу и каждое отдельное слово или комбинироваться метод с простой простановкой фраз либо слов.

Транспонирование используется для табличного кодирования. Исходный текст записывается по вертикали. Для шифровки его оформляют по горизонтали или наоборот. Метод штакетника это упрощённый вариант транспонирования. В две строки записывается предложение. В первой строчке чётные буквы, во второй нечётные.

Одиночная перестановка по ключу

Для кодирования текст вносится в таблицу размером 9Х9. Рядом оформляется идентичная. В первой части вписывается кодовая фраза либо предложение.

Во второй каждая буква переводится в число. Кодирование производится по смещению либо заменой. Для этого применяется ключ. В результате полученный зашифрованный вид фразы выписывается построчно.

Двойная перестановка

Накладывается на одиночную. Уже закодированное сообщение шифруется ещё раз. Могут проставляться как столбцы, так и строки. Во втором случае размер таблицы намеренно подбирается больше чем при первом случае шифрования.

Маршрутная перестановка

Это усложнённый тип транспонированной таблицы. Различие заключается в направлении чтения информации в таблице.

Для раскодирования сообщения потребуется знать направление, при котором кодовое слово было скрыто. Часто применяется шахматная доска. Вместо указания направления отмечается фигура с правилом движения по полю.

Перестановка «Волшебный квадрат»

Состоит из квадрата, в клетках которого указаны последовательно натуральные числа. Метод был изобретён в Китае

Важно чтобы разрядность в натуральных числах в итоге соответствовала последовательности написания и расположению в таблице

Вращающаяся решётка

Решётка состоит из нескольких квадратов. В них заполнены цифры и есть пробелы. Метод шифрования по направлению считается перестановочным.

Расположение пустых клеток должно быть таким, что при передвижении квадратов на их месте не оставалось пробелов. Для кодирования под решётку с составленными числами подкладывается квадрат с буквами.

При перекладывании верхнего слоя и поворачивании его, в пустых клетках будет отображаться конкретная буква. Необходимо направить решётку так, чтобы в пустое окошко попала именно подходящая буква для шифруемого слова.

Хеш-функции

Хешированием (от англ. hash) называется преобразование исходного информационного массива произвольной длины в битовую строку фиксированной длины.

Алгоритмов хеш-функций немало, а различаются они своими характеристиками – криптостойкостью, разрядностью, вычислительной сложностью и т.д.

Нас интересуют криптографически стойкие хеш-функции. К таким обычно предъявляют два требования:

  • Для заданного сообщения С практически невозможно подобрать другое сообщение С’ с таким же хешем
  • Практически невозможно подобрать пар сообщений (СС’), имеющих одинаковый хеш.

Требования называются стойкостью к коллизиям первого рода и второго рода соответственно.
Для таких функций остается важным и другое требование: при незначительном изменении аргумента должно происходить значительное изменение самой функции. Таким образом, значение хеша не должно давать информации даже об отдельных битах аргумента.

Примеры хеш-алгоритмов

  • Adler-32
  • CRC
  • SHA-1
  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
  • HAVAL
  • MD2
  • MD4
  • MD5
  • N-Hash

  • RIPEMD-256
  • RIPEMD-320
  • Skein
  • Snefru
  • Tiger (TTH)
  • Whirlpool
  • ГОСТ Р34.11-94 (ГОСТ 34.311-95)
  • IP Internet Checksum (RFC 1071)

История

Немецкая шифровальная машина «Enigma» времен 2-й мировой войны в действии

Криптография является древнейшей наукой, и первоначальными ее объектами были текстовые сообщения, которые с помощью определенных алгоритмов лишались смысла для всех, не обладающих специальным знанием по дешифровке этого сообщения – ключом.

Изначально использовались методы, сегодня применяемые разве что для головоломок, то есть, на взгляд современника, простейшие. К таким способам шифрования относятся, например, метод замены, когда каждая буква заменяется другой, отстоящей от нее на строго определенном расстоянии в алфавите. Или метод перестановочного шифрования, когда буквы меняют местами в определенной последовательности внутри слова.

В древние времена шифрование применялось главным образом в военном и торговом деле, шпионаже, среди контрабандистов.

Несколько позже ученые-историки определяют дату появления другой родственной науки – стеганография. Эта наука занимается маскировкой самого факта передачи сообщения. Зародилась она в античности, а примером здесь может служить получение спартанским царем Леонидом перед битвой с персами провощенной дощечки с текстом, покрытой сухим легкосмываемым раствором. При очистке оставленные на воске стилусом знаки становились отчетливо видимыми. Сегодня для сокрытия сообщения служат симпатические чернила, микроточки, микропленки и т.д.

С развитием математики стали появляться математические алгоритмы шифрования, но все эти виды криптографической защиты информации сохраняли в разной объемной степени статистические данные и оставались уязвимыми. Уязвимость стала особенно ощутима с изобретением частотного анализа, который был разработан в IX веке нашей эры предположительно арабским энциклопедистом ал-Кинди. И только в XV веке, после изобретения полиалфавитных шрифтов Леоном Баттистой Альберти (предположительно), защита перешла на качественно новый уровень. Однако в середине XVII века Чарлз Бэббидж представил убедительные доказательства частичной уязвимости полиалфавитных шрифтов перед частотным анализом.

Развитие механики позволило создавать приборы и механизмы, облегчающие шифрование – появились такие устройства, как квадратная доска Тритемиуса, дисковый шифр Томаса Джефферсона. Но все эти приборы ри в какое сравнение не идут с теми, были созданы в XX веке. Именно в это время стали появляться различные шифровальные машины и механизмы высокой сложности, например, роторные машины, самой известной из которых является «Энигма»

До бурного развития науки в XX веке криптографам приходилось иметь дело только с лингвистическими объектами, а в ХХ веке открылись возможности применения различных математических методов и теорий, статистики, комбинаторики, теории чисел и абстракной алгебры.

Но настоящий прорыв в криптографической науке произошел с появлением возможности представления любой информации в бинарном виде, разделенной на биты с помощью компьютеров, что позволило создавать шрифты с доселе невиданной криптографической стойкостью. Такие системы шифрования, конечно, могут быть подвергнуты взлому, но временные затраты на взлом себя в подавляющем большинстве случаев не оправдывают.

Сегодня можно говорить о значительных разработках в квантовой криптографии.

Коды

Настоящие коды состоят из соответствий для каждого слова отдельного кода. Для работы с ними необходимы так называемые кодовые книги. Фактически это тот же словарь, только содержащий переводы слов в коды. Типичным и упрощенным примером кодов является таблица ASCII — международный шифр простых знаков.

Главным преимуществом кодов является то, что расшифровать их очень сложно. Частотный анализ почти не работает при их взломе. Слабость же кодов — это, собственно, сами книги. Во-первых, их подготовка — сложный и дорогостоящий процесс. Во-вторых, для врагов они превращаются в желанный объект и перехват даже части книги вынуждает менять все коды полностью.

В 20-м веке многие государства для передачи секретных данных использовали коды, меняя кодовую книгу по прошествии определенного периода. И они же активно охотились за книгами соседей и противников.

Функции VK Coffee

Активность

  • Режим offline – при включении функции для других пользователей вы отображаетесь offline
  • Публиковать посты со статусом offline
  • Посылать запросы со статусом offline
  • Просматривать посты так что автор не узнает, что вы просматривали его посты
  • Идентификатор – Можно менять платформу (индикация устройства с которого вы заходили) доступны (iPhone, andro >

Сообщения

  • Нечиталка – прочитать сообщение и оно останется не прочитанным для отправителя
  • Отключить тайпинг – при наборе сообщения собеседник не увидит, что вы печатаете
  • Шифрование – шифрование сообщений при долгом нажатии на кнопку отправить
  • Обновление сообщений – встряхнуть гаджет и сообщения обновятся

Коды

Настоящие коды состоят из соответствий для каждого слова отдельного кода. Для работы с ними необходимы так называемые кодовые книги. Фактически это тот же словарь, только содержащий переводы слов в коды. Типичным и упрощенным примером кодов является таблица ASCII — международный шифр простых знаков.

Главным преимуществом кодов является то, что расшифровать их очень сложно. Частотный анализ почти не работает при их взломе. Слабость же кодов — это, собственно, сами книги. Во-первых, их подготовка — сложный и дорогостоящий процесс. Во-вторых, для врагов они превращаются в желанный объект и перехват даже части книги вынуждает менять все коды полностью.

В 20-м веке многие государства для передачи секретных данных использовали коды, меняя кодовую книгу по прошествии определенного периода. И они же активно охотились за книгами соседей и противников.

Использует

Шифрование уже давно используется военными и правительствами для облегчения секретной связи. В настоящее время он широко используется для защиты информации во многих гражданских системах. Например, Институт компьютерной безопасности сообщил, что в 2007 году 71% опрошенных компаний использовали шифрование для некоторых передаваемых данных, а 53% использовали шифрование для некоторых данных в хранилище. Шифрование можно использовать для защиты данных «в состоянии покоя», например информации, хранящейся на компьютерах и запоминающих устройствах (например, USB-накопителях ). В последние годы появилось множество сообщений о раскрытии конфиденциальных данных, таких как личные записи клиентов, в результате потери или кражи портативных компьютеров или резервных дисков; шифрование таких файлов в состоянии покоя помогает защитить их, если меры физической безопасности не сработают. Системы управления цифровыми правами , которые предотвращают несанкционированное использование или воспроизведение материалов, защищенных авторским правом, и защищают программное обеспечение от обратного проектирования (см. Также защиту от копирования ), являются еще одним несколько отличным примером использования шифрования данных в состоянии покоя.

Шифрование также используется для защиты данных при передаче, например данных, передаваемых через сети (например, Интернет, электронная коммерция ), мобильные телефоны , беспроводные микрофоны , беспроводные системы внутренней связи, устройства Bluetooth и банкоматы банка . В последние годы поступило множество сообщений о перехвате транзитных данных. Данные также должны быть зашифрованы при передаче по сетям для защиты от перехвата сетевого трафика неавторизованными пользователями.

Стирание данных

Обычные методы безвозвратного удаления данных с устройства хранения включают перезапись всего содержимого устройства нулями, единицами или другими шаблонами — процесс, который может занять значительное время, в зависимости от емкости и типа носителя данных. Криптография предлагает способ сделать стирание почти мгновенным. Этот метод называется крипто-шреддингом . Пример реализации этого метода можно найти на устройствах iOS , где криптографический ключ хранится в выделенном « стираемом хранилище». Поскольку ключ хранится на том же устройстве, эта настройка сама по себе не обеспечивает полной конфиденциальности или защиты, если неавторизованный человек получает физический доступ к устройству.

Теоретические сведения

Для начала мы изучим один из простейших шифров — шифр Цезаря, названный в честь римского императора. В этом шифре каждая буква текста заменяется на другую, которая находится на фиксированное число букв дальше в алфавите. Это фиксированное число букв называется ключом. Так, ключ 1 переводит букву латиницы C в букву D, а Z — по циклу в A. Если ключ равен 3, то буква C перейдет в F, а Z — в C. 

Примеры: используем шифр Цезаря с ключом на слове .

Ключ = 7, слово = computer

Шифр Цезаря прост, но, увы, ненадёжен (это взаимосвязанные вещи!): для английского алфавита — всего 25 вариантов шифровки, перебрать все возможные варианты легко даже без компьютера. Тем не менее, шифр Цезаря часто используют в качестве шага в других шифрах, таких, как шифр Виженера (о нём — в следующем пункте).

«Математизируем» шифр Цезаря. Обозначим незашифрованный текст буквой p, а pi — буква в тексте p, которая находится на позиции с номером i. Назовем секретный ключ буквой k, с — зашифрованный текст, а ci — буква в шифрованном тексте, которая находится на позиции i. Тогда вычислить каждую букву шифра можно по формуле: 

Привыкайте к такой формализации, она позволяет программировать алгоритм и выражает смысл шифра точно и сжато.

Если ключ k = 13 а изначальный текст p — «Be sure to drink your Ovaltine!», вот какой шифр мы получим:

Обратите внимание, O (первая буква в шифрованном тексте) смещена на 13 позиций от буквы B (первая буква в оригинальном тексте). То же самое с буквой r (вторая буква в шифровке) смещена на 13 букв от e (вторая буква в оригинале)

Третья буква в шифровке, f, смещена на 13 букв от s (третья в оригинале), тут мы ходим по кругу от z до a.

Шифр Цезаря с ключом 13 имеет специальное название ROT13. Он симметричный: применив его дважды, мы вернемся к изначальному тексту. Конечно, есть еще и ROT26, этот вообще супер-секьюрный, но только если вы нечётко выражаете свои мысли =). 

Шифр Вернама — это сложно

Теперь попро­бу­ем объ­яс­нить подробнее. 

1. Сооб­ще­ние хра­нит­ся в виде битов дан­ных. Допу­стим, мы шиф­ру­ем текст. Ком­пью­тер не уме­ет рабо­тать с тек­стом как тако­вым, он этот текст хра­нит как набор чис­ло­вых кодов (про­ще гово­ря, у ком­пью­те­ра все бук­вы про­ну­ме­ро­ва­ны и он пом­нит толь­ко эти номера).

Чис­ла, в свою оче­редь, ком­пью­тер хра­нит в виде дво­ич­но­го кода, то есть битов дан­ных. Это пока что не отно­сит­ся к шиф­ро­ва­нию, это про­сто то, как хра­нит­ся любая тек­сто­вая инфор­ма­ция в компьютере.

Бук­ва Код в ASCII Биты дан­ных
K 75 01001011
O 79 01001111
D 68 01000100

Если мы напи­шем KOD в коди­ров­ке ASCII, то для ком­пью­те­ра это будет после­до­ва­тель­ность из трёх чисел, а каж­дое чис­ло — это набор битов: 

01001011 01001111 01000100

2. Берём слу­чай­ные биты в каче­стве клю­ча шиф­ро­ва­ния. На вхо­де у нас три чис­ла по 8 бит. Что­бы их зашиф­ро­вать, нам нуж­ны 24 слу­чай­ных бита. Возь­мём их с потол­ка, они ниче­го не значат: 

10101101 01111010 10101011

3. Накла­ды­ва­ем коды друг на дру­га и при­ме­ня­ем алго­ритм шиф­ро­ва­ния. Шифр Вер­на­ма постро­ен на прин­ци­пе «исклю­ча­ю­ще­го ИЛИ», он же XOR. Он смот­рит на каж­дую пару битов и пыта­ет­ся понять, они оди­на­ко­вые или раз­ные. Если биты оди­на­ко­вые, резуль­тат про­вер­ки будет 0, если раз­ные — 1.

Мож­но про­ве­рить себя так: XOR зада­ёт вопрос «Эти биты раз­ные»? Если да — то 1, если нет — то 0.

Бук­ва K 1 1 1 1
Ключ 1 1 1 1 1
XOR (Они разные?) 1 1 1 1 1

Если мы таким обра­зом зако­ди­ру­ем три бук­вы, мы полу­чим три новых набо­ра битов: 

KOD (сооб­ще­ние) 01001011 01001111 01000100
Ключ 10101101 01111010 10101011
Резуль­тат шиф­ро­ва­ния с помо­щью XOR 11100110 00110101 11101111

Полу­ча­ет­ся, что на вхо­де у нас было 24 бита дан­ных и на выхо­де 24 бита дан­ных. Но эти дан­ные теперь совсем дру­гие. Если пере­ве­сти эти чис­ла обрат­но в текст, мы получим: 

KOD → æ5ï

История, которой уже 4 тыс. лет

Само по себе понятие «шифрование» впервые появилось еще около 4 тыс. лет назад. Простейшим способом шифрования пользовались еще с 3-го тысячелетия до н.э.

При написании письма, буквы менялись местами. Скажем, «А» соответствовала букве «Т», «Б» менялась на «У», «В» на «Ф» и так далее.

В результате, сообщение превращалось в, казалось бы, несвязный набор букв, расшифровать который могла лишь получающее сообщение сторона. Именно там знали, какая буква менялась на какую.

Забавно, но именно такой примитивный метод по сути являлся первым ключом шифрования.

В 479 году до н.э. спартанцы получили несколько деревянных табличек, покрытых восков

На них было важное зашифрованное послание о предстоящем нападении персов. Об этом случае упоминает древнегреческие историк Геродот

Передача информации с возможностью сокрытия от посторонних глаз впервые остро понадобилась именно в военной отрасли.

Криптографический цилиндр Томаса Джеферсона

Спустя много веков для криптографии наступит новый период с использованием полиалфавитных шрифтов. Их принцип был подобным, но более запутанным из-за использования нескольких алфавитов.

Печатная машинка с механическим алгоритмом шифрования.

В первой половине XX века стали использовать электромеханический метод шифрования при помощи хитроумных устройств — шифровальщиков. И, наконец, с 70-х годов XX века за шифровку взялись компьютеры.

Семь бед – один ответ

Угроз, как мы видим, существует много, и от каждой из них можно придумать свой способ защиты: изолировать компьютер в запертой спальне, поставить PIN-код на включение смартфона и так далее. Но если защитить информацию не путем физической изоляции, а так, чтобы ее мог прочитать только владелец, результат будет более надежным и всеобъемлющим.  Абсолютно все перечисленные неурядицы – большие и малые – могли бы не случиться, если бы важная информация, предназначенная не для всех глаз, хранилась бы в зашифрованном виде.

Иногда вы сталкиваетесь с шифрованием, даже если не задумываетесь об этом, – например, заходя в Gmail или на сайт онлайн-банкинга по протоколу HTTPS, вы связываетесь с банком по зашифрованному каналу. Встроено шифрование и в самый популярный сегодня стандарт сотовой связи GSM. Но сегодня мы сосредоточимся на другом – шифровании данных, хранящихся на компьютере или смартфоне.

История и применение

Шифр Цезаря назван в честь Гая Юлия Цезаря, который использовал его с левым сдвигом на 3

Шифр Цезаря называют в честь Юлия Цезаря, который согласно «Жизни двенадцати цезарей» Светония использовал его со сдвигом 3, чтобы защищать военные сообщения. Хотя Цезарь был первым зафиксированным человеком, использующим эту схему, другие шифры подстановки, как известно, использовались и ранее.

Если у него было что-либо конфиденциальное для передачи, то он записывал это шифром, то есть так изменял порядок букв алфавита, что нельзя было разобрать ни одно слово. Если кто-либо хотел дешифровать его и понять его значение, то он должен был подставлять четвертую букву алфавита, а именно, D, для A, и так далее, с другими буквами.Гай Светоний Транквилл Жизнь двенадцати цезарей, Книга первая, гл. 56

Его племянник, Август, также использовал этот шифр, но со сдвигом вправо на один, и он не повторялся к началу алфавита:

Всякий раз, когда он записывал шифром, он записал B для A, C для B, и остальной части букв на том же самом принципе, используя AA для X.Гай Светоний Транквилл Жизнь двенадцати цезарей, Книга вторая, гл. 88

Есть доказательства, что Юлий Цезарь использовал также и более сложные схемы.

Неизвестно, насколько эффективным шифр Цезаря был в то время, но, вероятно, он был разумно безопасен, не в последнюю очередь благодаря тому, что большинство врагов Цезаря были неграмотными, и многие предполагали, что сообщения были написаны на неизвестном иностранном языке. Нет никаких свидетельств того времени касательно методов взлома простых шифров подстановки. Самые ранние сохранившиеся записи о частотном анализе — это работы Ал-Кинди 9-го века об открытии частотного анализа.

Шифр Цезаря со сдвигом на один используется на обратной стороне мезузы, чтобы зашифровать имена Бога. Это может быть пережитком с раннего времени, когда еврейскому народу не разрешили иметь мезузы.

В XIX веке личная секция рекламных объявлений в газетах иногда использовалась, чтобы обмениваться сообщениями, зашифрованными с использованием простых шифров. Кан (1967) описывает случаи когда любители участвовали в секретных коммуникациях, зашифрованных с использованием шифра Цезаря в «Таймс». Даже позднее, в 1915, шифр Цезаря находил применение: российская армия использовала его как замену для более сложных шифров, которые оказались слишком сложными для войск; у немецких и австрийских криптоаналитиков были лишь небольшие трудности в расшифровке этих сообщений.

Шифр Цезаря со сдвигом тринадцать также используется в алгоритме ROT13, простом методе запутывания текста, широко используемого в Usenet, и используется скорее как способ сокрытия спойлеров, чем как метод шифрования.
Шифр Виженера использует шифр Цезаря с различными сдвигами в каждой позиции в тексте; значение сдвига определяется с помощью повторяющегося ключевого слова. Если ключевое слово такое же длинное, как и сообщение, сгенерировано случайным образом, содержится в тайне и используется лишь однократно — такая схема называется схема одноразовых блокнотов — и это единственная система шифрования, для которой доказана абсолютная криптографическая стойкость.

Ключевые слова короче чем сообщение (например, «Complete Victory», используемое Конфедерацией во время гражданской войны в США), вводят циклический образец, который мог бы быть обнаружен с помощью улучшенной версии частотного анализа.

В апреле 2006 беглый босс Мафии Бернардо Провенцано был пойман в Сицилии частично из-за криптоанализа его сообщений, написанных с использованием вариации шифра Цезаря. В шифре Провенцано буквы сначала заменялись на числа — порядковые номера букв в алфавите, а уже к полученной последовательности чисел применялся шифр Цезаря — так, чтобы при сдвиге на 3 «A» была написана как «4», «B» как «5», и так далее.

Часто для удобства использования шифра Цезаря используют два насаженных на общую ось диска разного диаметра с нарисованными по краям дисков алфавитами. Изначально диски поворачиваются так, чтобы напротив каждой буквы алфавита внешнего диска находилась та же буква алфавита малого диска. Если теперь повернуть внутренний диск на несколько символов, то мы получим соответствие между символами внешнего диска и внутреннего — шифр Цезаря. Получившийся диск можно использовать как для шифрования, так и для расшифровки.

Например, если внутреннее колесо повернуть так, чтобы символу A внешнего диска соответствовал символ D внутреннего диска, то мы получим шифр со сдвигом 3 влево.

Идеальное решение для шифрования

Существует простое и очень простое решение, которое предлагает шифрование для всех ваших действий в Интернете – даже в дороге. Это решение – VPN.

Технология виртуальной частной сети предлагает несколько удивительных преимуществ, и одно из них – возможность просматривать веб-страницы через безопасный зашифрованный туннель.

Как это работает: 

Безопасное соединение. Когда вы подключаетесь к VPN, вы устанавливаете частное безопасное соединение с другой удаленной сетью. Технология VPN, изначально использовавшаяся как способ безопасного удаленного доступа сотрудников к своей офисной сети, делает те же преимущества легко доступными для всех на любом устройстве.

Зашифрованный туннель: этот зашифрованный туннель означает, что ваши данные не могут быть перехвачены третьими сторонами и что даже если сеть WiFi или сайт, который вы просматриваете, незащищены, ваши данные по-прежнему в полной безопасности.

Еще одним преимуществом технологии VPN является то, что она теперь легко доступна и доступна в приложениях для различных устройств, поэтому нет никаких ограничений на то, когда вы можете ее использовать.

SaferVPN, например, предлагает простые в использовании приложения одним щелчком мыши для браузера Windows, Mac, iOS, Android и Chrome и использует 256-битное шифрование на уровне банка для защиты данных наших клиентов, обеспечивая полную безопасность.

Если вы хотите воспользоваться преимуществами технологии шифрования и защитить свою конфиденциальность на любом устройстве, сайте или в любом месте, попробуйте нашу бесплатную 24-часовую пробную версию или подпишитесь на нашу услугу (у нас есть 30-дневная гарантия возврата денег, поэтому вам нечего терять !)

Удачного безопасного просмотра!

Источник записи: https://www.safervpn.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector