Датчик холла

Когда и зачем нужно настраивать зажигание?

Сначала немножко теории. Если бы рабочая смесь в цилиндрах сгорала мгновенно, то проблем с опережением не было бы в принципе. Поджигай ее в верхней мертвой точке — и все окей. Но смесь сгорает не мгновенно: ей требуются миллисекунды. При этом реальная частота вращения коленчатого вала, конечно же, непостоянна. Поэтому нельзя тупо поджигать смесь в одно и то же время при разных режимах работы мотора: она будет сгорать либо слишком рано, либо чересчур поздно. Итог всегда будет неутешительный — двигатель плохо тянет, греется, неустойчиво работает, детонирует и т.п.

В частности, если начать «искрить» слишком рано (большой УОЗ

), то давление газов станет резко возрастать до прихода поршня в верхнюю мертвую точку, препятствуя его движению. Из-за этого уменьшится мощность и ухудшится экономичность мотора, он утратит приемистость и будет дергаться на малых оборотах. При позднем искрообразовании (малый УОЗ ) смесь будет долго гореть при расширяющемся объеме, а потому давление газов будет значительно ниже расчетного. Мощность и экономичность понизятся, а мотор сильно перегреется, поскольку догорание смеси будет идти на протяжении всего такта расширения.

Математика

Бабочка Хофштадтера

Целые числа, появляющиеся в эффекте Холла, являются примерами топологических квантовых чисел . Они известны в математике как первые и тесно связаны с фазой Берри . Поразительной моделью, представляющей большой интерес в этом контексте, является модель Азбеля – Харпера – Хофштадтера, квантовая фазовая диаграмма которой представляет собой бабочку Хофштадтера, показанную на рисунке. По вертикальной оси отложена напряженность магнитного поля, а по горизонтальной оси — химический потенциал , фиксирующий плотность электронов. Цвета представляют собой целочисленные холловские проводимости. Теплые цвета представляют собой положительные целые числа, а холодные — отрицательные. Отметим, однако, что плотность состояний в этих областях квантованной холловской проводимости равна нулю; следовательно, они не могут производить плато, наблюдаемые в экспериментах. Фазовая диаграмма фрактальна и имеет структуру на всех уровнях. На рисунке очевидное самоподобие . При наличии беспорядка, который является источником наблюдаемых в экспериментах плато, эта диаграмма сильно отличается, и фрактальная структура в основном размывается.

Что касается физических механизмов, примеси и / или конкретные состояния (например, краевые токи) важны как для «целочисленных», так и для «дробных» эффектов. Кроме того, кулоновское взаимодействие также существенно в дробном квантовом эффекте Холла . Наблюдаемое сильное сходство между целочисленными и дробными квантовыми эффектами Холла объясняется тенденцией электронов образовывать связанные состояния с четным числом квантов магнитного потока, называемые составными фермионами .

Эффектом Холла называют явление возникновения поперечных разностей потенциалов (также называемых холловским напряжением) при помещении проводников с постоянным током в магнитные поля.

Если в магнитном поле с определенной индукцией разместить электронный полупроводник или проводник, по проводнику пустить электрический ток определенной плотности, то на электроны, которые передвигаются с конкретной скоростью в магнитных полях, будет действовать сила Лоренца, отклоняя их в определенную сторону.

Магнетосопротивление

Эдвин Холл проводил исследования в надежде обнаружить повышение сопротивления проводника в магнитных полях, но в слабом поле не зарегистрировал его.

Магнетосопротивление не следует из теории металлов Друде. Однако при более строгом расчёте и в сильном поле магнетосопротивление достаточно хорошо проявляется.

Квантовый эффект Холла

В сильном магнитном поле в плоских проводниках (то есть в квазидвумерных электронных газах) в системе начинает сказываться квантовый эффект, что приводит к проявлению квантового эффект Холла — квантованию холловского сопротивления.

В сильном магнитном поле появляется дробный квантовый эффект Холла, с которым связана кардинальная перестройка внутренней структуры двумерных электронных жидкостей.

Аномальный эффект Холла

Пример возникновения напряжения в образцах, перпендикулярного направлению пропускаемых токов через образец, наблюдающегося в отсутствие приложенных постоянных магнитных полей. Явление полностью совпадает с эффектом Холла, но наблюдается без внешних постоянных магнитных полей.

Для наблюдения аномального эффекта необходимо нарушение инвариантности в отношении обращения времени в системе. Аномальный эффект Холла нередко наблюдаться в образце с намагниченностью.

Спиновый эффект Холла

В случаях отсутствия магнитных полей в немагнитном проводнике могут наблюдаться отклонения носителя тока в разные стороны с противоположным направлением спинов перпендикулярно электрическим полям.

Подобное явление получило определение спинового эффекта Холла, было предсказано теоретически Перелем и Дьяконовым в 1971 году. Говорят о внешних и внутренних спиновых эффектах. Внешние связаны со спин-зависимым рассеянием, а внутренние — со спин-орбитальным взаимодействием.

Применение

Датчики Холла используются для измерения силы постоянного тока в проводниках.

Эффект Холла допускает определение концентрации и подвижности носителей зарядов, а в некоторых случаях и типы носителей зарядов (дырки или электроны) в металлах или полупроводниках, что делает его хорошим методом изучения свойств полупроводников.

На основе эффекта Холла работает датчик Холла — прибор, измеряющий напряжённость магнитных полей. карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Что такое эффект Холла?

Эдвин Холл, пропуская ток через тонкую золотую пластину, расположенную между двумя магнитами, заметил, что носители заряда (электроны) отклоняются от центральной оси к одной из граней проводника. Таким образом, на этой грани возникает отрицательный заряд, а на противоположной — положительный. Возникшая разность потенциалов именуется холловским напряжением. Она строго перпендикулярна току в проводнике и вектору магнитной индукции. Это явление наблюдается не только в золоте, но и в любых проводниковых и полупроводниковых материалах, помещённых в магнитное поле.

Если проанализировать физическую суть, можно обнаружить, что у истоков накопления заряда на гранях проводника лежит сила Лоренца, с которой магнитное поле воздействует на заряженную частицу. Под её воздействием электроны будут накапливаться на грани проводника до тех пор, пока их суммарный заряд не скомпенсирует существующее магнитное поле.

Фотонный квантовый эффект Холла

Квантовый эффект Холла может наблюдаться не только в двумерных электронных системах , но и в фотонах. Фотоны не обладают собственным электрическим зарядом , но посредством манипуляции дискретными оптическими резонаторами и квантово-механической фазой создают в них искусственное магнитное поле . Этот процесс можно выразить метафорой фотонов, прыгающих между несколькими зеркалами. Путем попадания света через несколько зеркал фотоны направляются и получают дополнительную фазу, пропорциональную их угловому моменту . Это создает эффект, как будто они находятся в магнитном поле .

Основные сведения

Начнем с базовой информации: где находится датчик Холла, что это такое, для чего он нужен.  «Голый» датчик — это небольшой измеритель (сенсор, обнаружитель), почти всегда черный (цвет зависит от предпочтений производителя), размером в несколько миллиметров. Автомобильные изделия имеют сравнительно большой пластиковый защитный короб, «фишку» с кабелем с разъемом подключения.

Сенсор фаз осуществляет мониторинг магнитных полей, их параметров (напряженности), при этом выдает заданные алгоритмы работы (смыкание контактов и пр.).

Рассматриваемым сенсорам присвоили наименование от фамилии ученого Холла, открывшего, что разность потенциалов (холловского напряжения) возникает, если в поле помещают объекты с постоянными токами.

Автомобильный сенсор тока находится в трамблере — узле для подключения свечей, он скрыт пластиковой фишкой с тремя проводами и разъемом под них. На иных приборах он может размещаться где угодно. Обычно на печатных платах — это крошечная черная коробочка стандартно на 3, реже — на 4 ножках. Линейные Hall sensor напоминают микросхему. Изделие также определяют по маркировке, обозначения есть в справочниках радиодеталей, (распространенные S41, 41F, U18, 3144, 44E, 49E).

При токовом течении в одном направлении электроны отклоняются в проводниках, размещенных перпендикулярно к полю. Участки их имеют неравномерную плотность частиц, это и есть разность потенциалов, фиксируемая датчиком Холла. Становится возможным анализ напряжения под прямым углом к току.

Есть также Hall effect sensor упрощенный как, например, в смартфонах: только с функцией подтверждения наличия магнитных явлений, напряженность не анализируется. На базе узла, включающего датчик  и магнитомер, телефон снабжается опцией компаса.

Как функционирует

Принцип работы, использования датчика Холла:

  • Электроны при прохождении тока движутся по сенсору прямолинейно.
  • При воздействии поля частицы с зарядом отклоняются силой Лоренца по изогнутой траектории.
  • Отрицательно заряженные элементы, они же электроны, притягиваются на 1 сторону Hall sensor, а плюсовые (дырки) — к иной.
  • Описанное накопление по разным сегментам создает разное напряжение, это и есть разность потенциалов. Пропорциональность возникшего напряжения к электротоку и напряженности поля прямая. Эти окончательные явления и отслеживаются сенсором, принцип используется для определения положения подконтрольных им обслуживаемых объектов.

Где применяются

Датчики фаз начали устанавливаться в конструкции около 75 лет после их изобретения, когда появились доступные технологии создания полупроводниковых пленочных материалов.

Характерные области применение датчиков Холла:

  • первая область, где началось использование — машиностроение, для замеров углов распредвалов, коленвалов, фиксации искрения на узлах зажигания;
  • переключатели (бесконтактного типа), анализаторы уровня веществ, скорости вращения лопастей, приспособления дистанционного обнаружения токов;
  • сканирование магнитных обозначений;
  • как замена герконам (автоматические выключатели, смыкающие контакты посредством магнита). В этой сфере описываемые устройства наиболее распространенные из-за многочисленности приборов: микроэлектроника, техника от наушников до манипуляторов, клавиатур, в лифтах, охранном оснащении (двери, запорные элементы).

В смартфоне

Датчик холла в смартфоне применяются для таких целей:

  • как часть компаса, магнитомера;
  • для мониторинга закрытия/открытия чехла с магнитной защелкой отслеживанием ослабления/повышения поля;

Опишем, для чего нужен датчик холла в смартфоне на обложке. При отдалении магнита с обнаружителя идет импульс на активацию табло, когда ближе — на отключение. Разновидность таких чехлов — отдельный вид изделия, именуемый обычно Smart Case. Есть и дополнительные функции, принцип действия их такой: если применяется обложка без окошек около дисплея, то посредством обнаружителя отключается экран, когда он закрыт, при открытии — автоматическая активация. При наличии окошек инициируется переключение содержимого на табло. На видимой области — часы и пр., на всем дисплее — вся информация.

Не все смартфоны имею описанное усовершенствование, а также не всегда производители указывают его в перечне опций, поэтому нужно уточнять этот параметр. Но если в рекомендуемых аксессуарах есть отметка о таковых подходящих из категории Smart Case, то данная опция присутствует.

Изменение электронного сопротивления

Магнетосопротивление – это проявление изменений в электронном сопротивлении различных материалов, находящихся в магнитном поле. В целом, это любые изменения тока, пропускаемого через образцы в условиях приложенного напряжения и изменений магнитного поля. Каждое вещество обладает каким-либо магнетосопротивлением. В проводниках, способных проводить ток без сопротивления, существует понятие критического магнитного поля, которое нарушает течение эффекта и заставляет вещества принимать стандартное состояние, в котором сопротивление вновь будет наблюдаться. Нормальные металлы этот эффект выражают слабее. Полупроводники, в свою очередь, могут изменять свое относительное сопротивление в сто и даже десять тысяч раз больше, чем в каком-либо металле.

Эдвином Холлом проводилось множество экспериментов, направленных на поиск возрастания показателей сопротивления проводника, все также использовалось м. п., однако более слабое. Эффект не зарегистрировали. Такое явление не соответствует следствию из теории металлов, но дотошные и точные расчеты в условиях поля показывают довольно хорошо их магнетосопротивление.

Назначение и устройство датчика Холла

Название датчик берет от фамилии своего изобретателя. Именно он заметил, что если в созданное каким-то образом магнитное поле поместить металлическую пластину пот электрическим напряжением, то такие действия вызовут появление импульсов и электроны в этой пластине примут траекторию отклонения перпендикулярно направления самого магнитного потока. В зависимости от полярности магнитного поля, а из еще школьного курса физики мы знаем, что полярности у любого магнита бывают положительными и отрицательными, соответственно + и -, изменяется направление отклонения от поля. Эдаким образом, изменяется плотность электронов с разных сторон этой самой пластинки, что само по себе создает разность потенциалов электродвижущей силы.

От Лоренца к Холлу

Что является источником магнитного поля

Для лучшего понимания физических процессов следует вспомнить базовые определения силы Лоренца. Они описывают воздействие на движущийся заряд магнитного поля. При перпендикулярном расположении силовых линий и вектора скорости электрон будет отклоняться вертикально вверх.


Сила Лоренца и эффект Холла: пояснение основных зависимостей

На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).

Для определения полярности потенциала пользуются известным правилом правой руки. Разместив ладонь в соответствии с направлением движения электронов, положением большого пальца определяют направление воздействия силы Лоренца. В рассматриваемом примере она перемещает отрицательные заряды на пластине вниз. Соответствующий знак «-» отмечен на картинке.

Как большие электрические нагрузки можно контролировать с помощью датчиков Холла

Мы уже знаем, что выходная мощность датчика Холла очень мала (от 10 до 20 мА). Поэтому он не может напрямую контролировать большие электрические нагрузки. Тем не менее, мы можем контролировать большие электрические нагрузки с помощью датчиков Холла, добавив NPN-транзистор с открытым коллектором (сток тока) к выходу.

Транзистор NPN (приемник тока) функционирует в насыщенном состоянии в качестве переключателя приемника. Он замыкает выходной контакт заземлением, когда плотность потока превышает предварительно установленное значение «ВКЛ».

Выходной переключающий транзистор может быть в разных конфигурациях, таких как транзистор с открытым эмиттером, транзистор с открытым коллектором или оба. Вот так он обеспечивает двухтактный выход, который позволяет ему потреблять достаточный ток для непосредственного управления большими нагрузками.

Магнитные датчики

Основное преимущество использования датчиков магнитного поля, заключается в их бесконтактной работе. Они бывают аналоговыми и дискретными. Первый тип считается классическим. В его основе лежит принцип, что чем сильнее будет магнитное поле, тем больше будет величина напряжения. В современных приборах и устройствах такой тип уже практически не используется из-за значительных размеров. Цифровой же датчик построен на режиме работы «ключ» и имеет два устойчивых положения. Если сила индукции недостаточна он не срабатывает.

Вам это будет интересно Состав и определение конденсатора: список свойств и маркировка

Разделяются дискретные элементы Холла на два типа:

  • униполярные — срабатывание которых зависит от полюса магнитного поля;
  • биполярные — переключения состояния датчика происходит при изменении магнитного полюса;
  • омниполярные — реагируют на действие магнитной индукции любого направления.

Конструктивно датчик представляет собой электронный прибор с тремя выводами. Он может выпускаться как в стандартном исполнении DIP, DFN или SOT, так и в герметичном: например, 1GT101DC (герметичный), A1391SEHLT-T (DNF6), SS39ET (SOT), 2SS52M (DIP).

Характеристики устройства

Выпускаемые датчики, использующие явление Холла, как и любые электронные радиокомпоненты характеризуются своими параметрами. Главным из них является тип прибора и напряжение питания. Но, кроме этого, выделяют следующие технические характеристики:

  1. Величина измеряемой индукции. Измеряется она в гауссах или миллитеслах.
  2. Чувствительность — определяется значением магнитного потока, на который реагирует датчик, единица измерения мВ/Гс или мВ/мТл.
  3. Нулевое напряжение магнитного поля — значение разности потенциалов, соответствующее отсутствию магнитного поля.
  4. Дрейф нуля — изменение напряжения, зависящее от температуры. Указывается в процентном отклонении от температуры 25 °C.
  5. Дрейф чувствительности — изменение чувствительности, вызванное изменением температуры.
  6. Полоса пропускания — уровень снижения чувствительности с шагом в 3 дБ.
  7. Индукция включения и выключения — это значение напряжённости поля, при котором датчик устойчиво срабатывает.
  8. Гистерезис — разность между индукциями включения и выключения;
  9. Время срабатывания — характеризуется промежутком времени перехода из одного устойчивого состояния в другое.

Изготовление приборов

Материал, из которого выполняется элемент Холла, должен обладать большой подвижностью носителей зарядов. Для получения наибольшего значения напряжения вещество не должно иметь высокую электропроводностью. Поэтому при производстве устройств используется: селенид, теллурид ртути, антимонид индия. Тонкопленочные датчики получаются методом испарения вещества и осаждения его на подложку. В качестве её служит слюда или керамика.

Изготавливают датчики также из полупроводников — германия и кремния. Их легируют мышьяком или фосфорной сурьмой. Такие устройства обладают низкой зависимостью от изменения температуры, а величина образуемой на них ЭДС может достигать одного вольта.

Типовой процесс производства пластинчатого датчика Холла состоит из следующих операций:

  • обрезка пластины нужного размера;
  • шлифовка поверхности;
  • формирование с помощью пайки либо сварки симметричных выводов;
  • герметизация.

Одним из главных преимуществ датчиков, выполненных на этом эффекте, является электрическая изоляция (гальваническая развязка) делающие их применение удобным и безопасным.

What is the Hall Effect

The Hall Effect is a measurement of displaced electrons in an electric current caused by an electromagnetic force. That electromagnetic force being a magnet. The electric current being anything that conducts electricity.

A magnet has an invisible “magnetic” field that radiates from its core, like gravity from the earth, pulling in or pushing away objects with magnetic properties. Like steel, but not aluminum.

This magnetic field also pulls in or pushes away electrodes (electricity balls) in an electric current (a flow of electricity) causing a split of positive and negative electrodes. Which can be measured with another electric current connected on one side to the positive- and other side negative electrodes, creating a potential difference (a rate of electricity flowing from one to another point).

To put it in other words. Imagine that the split in between positive and negative electrodes is the same as a battery with a minus and plus side. Now to create an electric flow, you connect the minus and plus side using a copper wire. To know how fast or strong the electric flow is, you connect a light bulb in between. Just like those electrical engineering 101 toys.

The battery is a bit quirky (you got it from Taobao) and has electricity making circles in its core, not flowing between the minus and plus side. Bummer, it doesn’t work well.

However, when you place a magnet nearby it starts to split that electricity into negative and positive charge. And pushes it in its respective minus and plus sides. An electric flow was created and the light bulb suddenly turns on!

When you place the magnet closer to the battery, it starts to split even more negative/positive charge and the bulb becomes even brighter. You take it further away and the bulb decreases in brightness.

This phenomena is called the Hall Effect.

Now imagine that said magnet attached to a switch stem and a sensor below it on the PCB. Tada! Now you have a Hall Effect keyboard.

Chyrosran22’s video for Tom’s Hardware explains this concept and its benefits very well. Recommended watch.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.


Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.


Внешний вид датчика Холла для СБЗ ВАЗ 2110

Вывод

Используемые размеры
Б.→{\ displaystyle {\ vec {B}}} Плотность магнитного потока
Э.→{\ displaystyle {\ vec {E}}} Напряженность электрического поля
Ф.→{\ displaystyle {\ vec {F}}} Усилие на грузовом носителе
UЧАС{\ Displaystyle U _ {\ mathrm {H}}} Напряжение Холла
Я.{\ displaystyle I} Электрический ток
j→{\ displaystyle {\ vec {j}}} Плотность электрического тока
v→{\ displaystyle {\ vec {v}}} Скорость дрейфа носителей заряда
б{\ displaystyle b} Ширина проводника
d{\ displaystyle d} Толщина проводника
п{\ displaystyle n} Плотность носителя
q{\ displaystyle q} Загрузка грузового автомобиля
А.ЧАС{\ Displaystyle А _ {\ mathrm {H}}} Постоянная холла
Базовые знания векторного исчисления и электродинамики помогут понять этот раздел .

Здесь следует сделать краткий вывод формулы для напряжения Холла. Срок действия вывода ограничен электрическими проводниками только с одним типом носителя заряда, такими как металлы (электроны) или сильно легированные полупроводники (преимущественно дырки или электроны).

Движущиеся носители заряда в магнитном поле испытывают силу Лоренца :

Ф.→знак равноq(v→×Б.→){\ Displaystyle {\ vec {F}} = д \, ({\ vec {v}} \ раз {\ vec {B}})}

Эффект Холла создает компенсирующее электрическое поле , которое нейтрализует отклоняющее действие магнитного поля. Следовательно, к результирующей силе, действующей на несущие элементы, должно применяться следующее:

q(Э.→+v→×Б.→)знак равно{\ displaystyle q \, ({\ vec {E}} + {\ vec {v}} \ times {\ vec {B}}) = 0}

Для простоты система координат размещена таким образом, что носители заряда движутся по направлению, а магнитное поле действует по направлению. Так оно и есть . Таким образом, y-составляющая приведенного выше уравнения становится после деления на :
Икс{\ displaystyle x}z{\ displaystyle z}v→знак равно(vИкс,,){\ Displaystyle {\ vec {v}} = (v_ {x}, 0,0)}Б.→знак равно(,,Б.z){\ displaystyle {\ vec {B}} = (0,0, B_ {z})}q{\ displaystyle q}

Э.y-vИксБ.zзнак равно{\ displaystyle \ left.E_ {y} -v_ {x} B_ {z} = 0 \ right. \,}

Плотность тока в проводнике обычно можно выразить как Если разрешить эту взаимосвязь и поместить ее в приведенное выше уравнение , получим
j→{\ displaystyle {\ vec {j}}}j→знак равнопqv→{\ displaystyle {\ vec {j}} = nq {\ vec {v}}}vИкс{\ displaystyle v_ {x}}

Э.yзнак равно1пqjИксБ.zзнак равноА.ЧАСjИксБ.z{\ displaystyle E_ {y} = {\ frac {1} {nq}} \, j_ {x} B_ {z} = A _ {\ mathrm {H}} \, j_ {x} B_ {z}}

Это соотношение определяет постоянную Холла , которая характеризует силу эффекта Холла.
А.ЧАС{\ Displaystyle А _ {\ mathrm {H}}}

Чтобы сделать уравнение более управляемым, проводник, в котором произошло разделение зарядов , можно рассматривать как пластинчатый конденсатор. Для этого применяется отношение

Э.yзнак равноUЧАСб{\ displaystyle E_ {y} = {\ frac {U _ {\ mathrm {H}}} {b}}}.

Кроме того, плотность тока в данном случае может быть выражена как. Если вы воспользуетесь этими двумя обозначениями, вы получите выражение для напряжения Холла, которое зависит только от легко измеримых величин :
jИкс{\ displaystyle j_ {x}}jИксзнак равноЯ.бd{\ displaystyle j_ {x} = {\ frac {I} {bd}}}UЧАС{\ Displaystyle U _ {\ mathrm {H}}}

UЧАСзнак равноА.ЧАСЯ.Б.zd{\ Displaystyle U _ {\ mathrm {H}} = A _ {\ mathrm {H}} \, {\ frac {IB_ {z}} {d}}}.

Это уравнение также верно для проводников с разными типами носителей заряда, но тогда постоянная Холла больше не может быть вычислена. Так называемое сопротивление Холла можно определить из уравнения :
А.ЧАСзнак равно1пq{\ Displaystyle А _ {\ mathrm {H}} = {\ гидроразрыва {1} {nq}}}

Р.(Б.)знак равноА.ЧАСБ.zd{\ Displaystyle R (B) = A _ {\ mathrm {H}} \, {\ frac {B_ {z}} {d}}}

Сопротивление Холла характеризует элемент Холла , но не имеет ничего общего с электрическим сопротивлением, измеренным на элементе Холла . Он указывает отношение напряжения Холла к току элемента Холла при определенной плотности магнитного потока:

Р.(Б.)знак равноUЧАСЯ.{\ Displaystyle R (B) = {\ гидроразрыва {U _ {\ text {H}}} {I}}}
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector